942 resultados para Semisolid Structure Formation
Resumo:
Insoluble protein fibrils resulting from the self-assembly of a conformational intermediate are implicated as the causative agent in several severe human amyloid diseases, including Alzheimer’s disease, familial amyloid polyneuropathy, and senile systemic amyloidosis. The latter two diseases are associated with transthyretin (TTR) amyloid fibrils, which appear to form in the acidic partial denaturing environment of the lysosome. Here we demonstrate that flufenamic acid (Flu) inhibits the conformational changes of TTR associated with amyloid fibril formation. The crystal structure of TTR complexed with Flu demonstrates that Flu mediates intersubunit hydrophobic interactions and intersubunit hydrogen bonds that stabilize the normal tetrameric fold of TTR. A small-molecule inhibitor that stabilizes the normal conformation of a protein is desirable as a possible approach to treat amyloid diseases. Molecules such as Flu also provide the means to rigorously test the amyloid hypothesis, i.e., the apparent causative role of amyloid fibrils in amyloid disease.
Resumo:
CS1 pili serve as the prototype of a class of filamentous appendages found on the surface of strains of enterotoxigenic Escherichia coli. The four genes needed to synthesize functional CS1 pili in E. coli K12 are: cooA, which encodes the major pilin protein; cooD, which encodes a minor pilin protein found at the tip of the structure; cooC, which encodes a protein found in the outer membrane of piliated bacteria; and cooB. We show here that CooB, which is required for pilus assembly but is not part of the final structure, stabilizes CooA, CooC, and CooD. We previously reported that CooB is complexed with CooA in the periplasm and show here that CooB also is found complexed with CooD in the periplasm. CooB is associated with the membrane fraction only in the presence of CooC, suggesting that these two proteins also interact. This suggests that although it has no homology to known chaperone proteins, CooB serves a chaperone-like role for assembly of CS1.
Resumo:
A physical theory of protein secondary structure is proposed and tested by performing exceedingly simple Monte Carlo simulations. In essence, secondary structure propensities are predominantly a consequence of two competing local effects, one favoring hydrogen bond formation in helices and turns, the other opposing the attendant reduction in sidechain conformational entropy on helix and turn formation. These sequence specific biases are densely dispersed throughout the unfolded polypeptide chain, where they serve to preorganize the folding process and largely, but imperfectly, anticipate the native secondary structure.
Resumo:
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.
Resumo:
Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.
Resumo:
Bacteriophage λ encodes a number of genes involved in the recombinational repair of DNA double-strand breaks. The product of one of these genes, rap, has been purified. Truncated Rap proteins that copurify with the full-length form are derived, at least in part, from a ρ-dependent transcription terminator located within its coding sequence. Full-length and certain truncated Rap polypeptides bind preferentially to branched DNA substrates, including synthetic Holliday junctions and D-loops. In the presence of manganese ions, Rap acts as an endonuclease that cleaves at the branch point of Holliday and D-loop substrates. It shows no obvious sequence preference or symmetry of cleavage on a Holliday junction. The biochemical analysis of Rap gives an insight into how recombinants could be generated by the nicking of a D-loop without the formation of a classical Holliday junction.
Resumo:
Cysteine mutagenesis and site-directed spin labeling in the C-terminal region of rhodopsin have been used to probe the local structure and proximity of that region to the cytoplasmic loops. Each of the native amino acids in the sequence T335–T340 was replaced with Cys, one at a time. The sulfhydryl groups of all mutants reacted rapidly with the sulfhydryl reagent 4,4′-dithiodipyridine, which indicated a high degree of solvent accessibility. Furthermore, to probe the proximity relationships, a series of double Cys mutants was constructed. One Cys in all sets was at position 338 and the other was at a position in the sequence S240–V250 in the EF interhelical loop, at position 65 in the AB interhelical loop, or at position 140 in the CD interhelical loop. In the dark state, no significant disulfide formation was observed between C338 and C65 or C140 under the conditions used, whereas a relatively rapid disulfide formation was observed between C338 and C242 or C245. Spin labels in the double Cys mutants showed the strongest magnetic interactions between the nitroxides attached to C338 and C245 or C246. Light activation of the double mutant T242C/S338C resulted in slower disulfide formation, whereas interactions between nitroxides at C338 and C245 or C246 decreased. These results suggest the proximity of the C-terminal residue C338 to residues located on the outer face of a cytoplasmic helical extension of the F helix with an apparent increase of distance upon photoactivation.
Resumo:
Diploid yeast develop pseudohyphae in response to nitrogen starvation, while haploid yeast produce invasive filaments which penetrate the agar in rich medium. We have identified a gene, FLO11, that encodes a cell wall protein which is critically required for both invasion and pseudohyphae formation in response to nitrogen starvation. FLO11 encodes a cell surface flocculin with a structure similar to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. Cells of the Saccharomyces cerevisiae strain Σ1278b with deletions of FLO11 do not form pseudohyphae as diploids nor invade agar as haploids. In rich media, FLO11 is regulated by mating type; it is expressed in haploid cells but not in diploids. Upon transfer to nitrogen starvation media, however, FLO11 transcripts accumulate in diploid cells, but not in haploids. Overexpression of FLO11 in diploid cells, which are otherwise not invasive, enables them to invade agar. Thus, the mating type repression of FLO11 in diploids grown in rich media suffices to explain the inability of these cells to invade. The promoter of FLO11 contains a consensus binding sequence for Ste12p and Tec1p, proteins known to cooperatively activate transcription of Ty1 elements and the TEC1 gene during development of pseudohyphae. Yeast with a deletion of STE12 does not express FLO11 transcripts, indicating that STE12 is required for FLO11 expression. These ste12-deletion strains also do not invade agar. However, the ability to invade can be restored by overexpressing FLO11. Activation of FLO11 may thus be the primary means by which Ste12p and Tec1p cause invasive growth.
Resumo:
The “cut” mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11+ suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed that cut11+ encodes a novel protein with seven putative membrane-spanning domains and homology to the Saccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis.
Resumo:
It has been proved that, during anaerobic biosynthesis of the corrin macrocycle, the two-carbon fragment excised from the precursor, precorrin-3, is acetaldehyde, which originates from C-20 and its attached methyl group. This apparently contradictory finding is rationalized in terms of the subsequent enzymatic oxidation of acetaldehyde to acetic acid, which was previously regarded as the volatile fragment released by the action of the biosynthetic enzymes of Propionibacterium shermanii. The observation that acetaldehyde (rather than acetic acid) is extruded during anaerobic B12 synthesis is in full accord with the structure of factor IV, a new intermediate on the pathway.
Resumo:
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells.
Resumo:
Aspartate transcarbamoylase (ATCase; EC 2.1.3.2) is one of three enzymatic domains of CAD, a protein whose native structure is usually a hexamer of identical subunits. Alanine substitutions for the ATCase residues Asp-90 and Arg-269 were generated in a bicistronic vector that encodes a 6-histidine-tagged hamster CAD. Stably transfected mammalian cells expressing high levels of CAD were easily isolated and CAD purification was simplified over previous procedures. The substitutions reduce the ATCase Vmax of the altered CADs by 11-fold and 46-fold, respectively, as well as affect the enzyme's affinity for aspartate. At 25 mM Mg2+, these substitutions cause the oligomeric CAD to dissociate into monomers. Under the same dissociating conditions, incubating the altered CAD with the ATCase substrate carbamoyl phosphate or the bisubstrate analogue N-phosphonacetyl-l-aspartate unexpectedly leads to the reformation of hexamers. Incubation with the other ATCase substrate, aspartate, has no effect. These results demonstrate that the ATCase domain is central to hexamer formation in CAD and suggest that the ATCase reaction mechanism is ordered in the same manner as the Escherichia coli ATCase. Finally, the data indicate that the binding of carbamoyl phosphate induces conformational changes that enhance the interaction of CAD subunits.
Resumo:
The disulfide bond between Cys-110 and Cys-187 in the intradiscal domain is required for correct folding in vivo and function of mammalian rhodopsin. Misfolding in rhodopsin, characterized by the loss of ability to bind 11-cis-retinal, has been shown to be caused by an intradiscal disulfide bond different from the above native disulfide bond. Further, naturally occurring single mutations of the intradiscal cysteines (C110F, C110Y, and C187Y) are associated with retinitis pigmentosa (RP). To elucidate further the role of every one of the three intradiscal cysteines, mutants containing single-cysteine replacements by alanine residues and the above three RP mutants have been studied. We find that C110A, C110F, and C110Y all form a disulfide bond between C185 and C187 and cause loss of retinal binding. C185A allows the formation of a C110–C187 disulfide bond, with wild-type-like rhodopsin phenotype. C187A forms a disulfide bond between C110 and C185 and binds retinal, and the pigment formed has markedly altered bleaching behavior. However, the opsin from the RP mutant C187Y forms no rhodopsin chromophore.
Resumo:
Mammalian xanthine oxidoreductases, which catalyze the last two steps in the formation of urate, are synthesized as the dehydrogenase form xanthine dehydrogenase (XDH) but can be readily converted to the oxidase form xanthine oxidase (XO) by oxidation of sulfhydryl residues or by proteolysis. Here, we present the crystal structure of the dimeric (Mr, 290,000) bovine milk XDH at 2.1-Å resolution and XO at 2.5-Å resolution and describe the major changes that occur on the proteolytic transformation of XDH to the XO form. Each molecule is composed of an N-terminal 20-kDa domain containing two iron sulfur centers, a central 40-kDa flavin adenine dinucleotide domain, and a C-terminal 85-kDa molybdopterin-binding domain with the four redox centers aligned in an almost linear fashion. Cleavage of surface-exposed loops of XDH causes major structural rearrangement of another loop close to the flavin ring (Gln 423—Lys 433). This movement partially blocks access of the NAD substrate to the flavin adenine dinucleotide cofactor and changes the electrostatic environment of the active site, reflecting the switch of substrate specificity observed for the two forms of this enzyme.
Resumo:
The prgHIJK operon encodes components of the Salmonella typhimurium pathogenicity island 1 type III secretion system (TTSS). Previously, prgH and prgK were shown to be required for formation of the supramolecular type III secretion needle complex (NC) [Kubori, T., et al. (1998) Science 280, 602–605]. This work indicates that all prg operon genes are required for NC formation. PrgH multimerizes into a distinct tetrameric-shaped structure that may be an early intermediate of NC assembly and may provide the structural foundation required for PrgK oligomerization. PrgH and PrgK, in the absence of other TTSS components, oligomerize into ring-shaped structures identical in appearance and size to the base of the NC, indicating that they are likely the major inner membrane structural components required for secretion. PrgI and PrgJ cofractionate with the NC and are secreted into the culture supernatant. NC from prgI and prgJ mutants have an identical morphology to the envelope-spanning (basal body) NC components, but are missing the external needle, indicating that PrgI and PrgJ are required for full NC assembly and are likely components of the external needle. Therefore, PrgI and PrgJ are secreted through the NC basal body, composed in part of PrgH/K and InvG/H rings, to participate in assembly of the more distal components of the NC.