795 resultados para Selbo, Glenn


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comment on article in Lancet, February 2008 Feb 23;371(9613):651-659.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The absorption of cocoa flavanols in the small intestine is limited, and the majority of the flavanols reach the large intestine where they may be metabolized by resident microbiota. OBJECTIVE: We assessed the prebiotic potential of cocoa flavanols in a randomized, double-blind, crossover, controlled intervention study. DESIGN: Twenty-two healthy human volunteers were randomly assigned to either a high-cocoa flavanol (HCF) group (494 mg cocoa flavanols/d) or a low-cocoa flavanol (LCF) group (23 mg cocoa flavanols/d) for 4 wk. This was followed by a 4-wk washout period before volunteers crossed to the alternant arm. Fecal samples were recovered before and after each intervention, and bacterial numbers were measured by fluorescence in situ hybridization. A number of other biochemical and physiologic markers were measured. RESULTS: Compared with the consumption of the LCF drink, the daily consumption of the HCF drink for 4 wk significantly increased the bifidobacterial (P < 0.01) and lactobacilli (P < 0.001) populations but significantly decreased clostridia counts (P < 0.001). These microbial changes were paralleled by significant reductions in plasma triacylglycerol (P < 0.05) and C-reactive protein (P < 0.05) concentrations. Furthermore, changes in C-reactive protein concentrations were linked to changes in lactobacilli counts (P < 0.05, R(2) = -0.33 for the model). These in vivo changes were closely paralleled by cocoa flavanol-induced bacterial changes in mixed-batch culture experiments. CONCLUSION: This study shows, for the first time to our knowledge, that consumption of cocoa flavanols can significantly affect the growth of select gut microflora in humans, which suggests the potential prebiotic benefits associated with the dietary inclusion of flavanol-rich foods. This trial was registered at clinicaltrials.gov as NCT01091922.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weaning is a stressful process for kittens, and is often associated with diarrhoea and the onset of infectious diseases. The gastrointestinal microbiota plays an essential role in host well-being, including improving homeostasis. Composition of the gastrointestinal microbiota of young cats is poorly understood, and the impact of diet on the kitten microbiota unknown. The aims of this study were to monitor the faecal microbiota of kittens and determine the effect(s) of diet on its composition. Bacterial succession was monitored in two groups of kittens (at 4 and 6 weeks, and 4 and 9 months of age) fed different foods. Age-related microbial changes revealed significantly different counts of total bacteria, lactic acid bacteria, Desulfovibrionales, Clostridium cluster IX and Bacteroidetes between 4-week- and 9-month-old kittens. Diet-associated differences in the faecal microbiota of the two feeding groups were evident. In general, fluorescence in situ hybridization analysis demonstrated bifidobacteria, Atopobium group, Clostridium cluster XIV and lactic acid bacteria were dominant in kittens. Denaturing gradient gel electrophoresis profiling showed highly complex and diverse faecal microbiotas for kittens, with age- and/or food-related changes seen in relation to species richness and similarity indices. Four-week-old kittens harboured more diverse and variable profiles than those of weaned kittens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through modulation of faecal microbiota, fermentation characteristics and faecal water genotoxicity. A total of thirty-seven volunteers completed this randomised, double-blind, placebo-controlled crossover trial. The treatments – juice containing 4 g GOS and placebo – were consumed twice daily for 3 weeks, preceded by 3-week washout periods. To study the effect of GOS on different large bowel regions, three-stage continuous culture systems were conducted in parallel using faecal inocula from three volunteers. Faecal samples were microbially enumerated by quantitative PCR. In vivo, following GOS intervention, bifidobacteria were significantly more compared to post-placebo (P = 0·02). Accordingly, GOS supplementation had a bifidogenic effect in all in vitro system vessels. Furthermore, in vessel 1 (similar to the proximal colon), GOS fermentation led to more lactobacilli and increased butyrate. No changes in faecal water genotoxicity were observed. To conclude, GOS supplementation significantly increased bifidobacteria numbers in vivo and in vitro. Increased butyrate production and elevated bifidobacteria numbers may constitute beneficial modulation of the gut microbiota in a maturing population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EC Regulation No. 1924/2006 on Nutrition and Health claims made on foods has generated considerable debate and concern among scientists and industry. At the time of writing, the European Food Safety Authority (EFSA) has not approved any probiotic claims despite numerous human trials and meta-analyses showing evidence of beneficial effects. On 29th and 30th September 2010, ten independent, academic scientists with a documented record in probiotic research, met to discuss designs for future probiotic studies to demonstrate health benefits for gut and immune function. The expert panel recommended the following: (i) always formulate a precise and concrete hypothesis, and appropriate goals and parameters before starting a trial; (ii) ensure trials have sufficient sample size, such that they are adequately powered to reach statistically significant conclusions, either supporting or rejecting the a priori hypothesis, taking into account adjustment for multiple testing (this might necessitate more than one recruitment site); (iii) ensure trials are of appropriate duration; (iv) focus on a single, primary objective and only evaluate multiple parameters when they are hypothesis-driven. The panel agreed that there was an urgent need to better define which biomarkers are considered valuable for substantiation of a health claim. As a first step, the panel welcomed the publication on the day of the meeting of EFSA's draft guidance document on immune and gut health, although it came too late for study designs and dossiers to be adjusted accordingly. New validated biomarkers need to be identified in order to properly determine the range of physiological functions influenced by probiotics. In addition, validated biomarkers reflecting risk factors for disease, are required for article 14 claims (EC Regulation No. 1924/2006). Finally, the panel concluded that consensus among scientists is needed to decide appropriate clinical endpoints for trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this placebo-controlled, double-blind, crossover human feeding study, the effects of polydextrose (PDX; 8 g/d) on the colonic microbial composition, immune parameters, bowel habits and quality of life were investigated. PDX is a complex glucose oligomer used as a sugar replacer. The main goal of the present study was to identify the microbial groups affected by PDX fermentation in the colon. PDX was shown to significantly increase the known butyrate producer Ruminococcus intestinalis and bacteria of the Clostridium clusters I, II and IV. Of the other microbial groups investigated, decreases in the faecal Lactobacillus–Enterococcus group were demonstrated. Denaturing gel gradient electrophoresis analysis showed that bacterial profiles between PDX and placebo treatments were significantly different. PDX was shown to be slowly degraded in the colon, and the fermentation significantly reduced the genotoxicity of the faecal water. PDX also affected bowel habits of the subjects, as less abdominal discomfort was recorded and there was a trend for less hard and more formed stools during PDX consumption. Furthermore, reduced snacking was observed upon PDX consumption. This study demonstrated the impact of PDX on the

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.