845 resultados para Secure Authentication for Broadcast (DNP3-SAB)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent experimental demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication and particularly in secure communications. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. An error-free distribution of a random key with an average rate of 100 bps between the users is demonstrated and the key is shown to be unrecoverable to an eavesdropper employing either time or frequency domain passive attacks. In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. © 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workflows are set of activities that implement and realise business goals. Modern business goals add extra requirements on workflow systems and their management. Workflows may cross many organisations and utilise services on a variety of devices and/or supported by different platforms. Current workflows are therefore inherently context-aware. Each context is governed and constrained by its own policies and rules to prevent unauthorised participants from executing sensitive tasks and also to prevent tasks from accessing unauthorised services and/or data. We present a sound and multi-layered design language for the design and analysis of secure and context aware workflows systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental results on a 50km fiber laser switching among four different values of the free-spectral range for possible applications in secure key-distribution. © 2014 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of the secret key is the weakest link of many data encryption systems. Quantum key distribution (QKD) schemes provide attractive solutions [1], however their implementation remains challenging and their range and bit-rate are limited. Moreover, practical QKD systems, employ real-life components and are, therefore, vulnerable to diverse attack schemes [2]. Ultra-Long fiber lasers (UFLs) have been drawing much attention recently because of their fundamentally different properties compared to conventional lasers as well as their unique applications [3]. Here, we demonstrate a 100Bps, practically secure key distribution, over a 500km link, employing Raman gain UFL. Fig. 1(a) depicts a schematic of the UFL system. Each user has an identical set of two wavelength selective mirrors centered at l0 and l 1. In order to exchange a key-bit, each user independently choose one of these mirrors and introduces it as a laser reflector at their end. If both users choose identical mirrors, a clear signal develops and the bits in these cases are discarded. However if they choose complementary mirrors, (1, 0 or 0, 1 states), the UFL remains below lasing threshold and no signal evolves. In these cases, an eavesdropper can only detect noise and is unable to determine the mirror choice of the users, where the choice of mirrors represent a single key bit (e.g. Alice's choice of mirror is the key-bit). These bits are kept and added to the key. The absence of signal in the secure states faxilitates fast measurements to distinguish between the non-secure and the secure states and to determine the key-bit in the later case, Sequentially reapeating the single bit exchange protocol generate the entire keys of any desirable length. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our modular approach to data hiding is an innovative concept in the data hiding research field. It enables the creation of modular digital watermarking methods that have extendable features and are designed for use in web applications. The methods consist of two types of modules – a basic module and an application-specific module. The basic module mainly provides features which are connected with the specific image format. As JPEG is a preferred image format on the Internet, we have put a focus on the achievement of a robust and error-free embedding and retrieval of the embedded data in JPEG images. The application-specific modules are adaptable to user requirements in the concrete web application. The experimental results of the modular data watermarking are very promising. They indicate excellent image quality, satisfactory size of the embedded data and perfect robustness against JPEG transformations with prespecified compression ratios. ACM Computing Classification System (1998): C.2.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If we classify variables in a program into various security levels, then a secure information flow analysis aims to verify statically that information in a program can flow only in ways consistent with the specified security levels. One well-studied approach is to formulate the rules of the secure information flow analysis as a type system. A major trend of recent research focuses on how to accommodate various sophisticated modern language features. However, this approach often leads to overly complicated and restrictive type systems, making them unfit for practical use. Also, problems essential to practical use, such as type inference and error reporting, have received little attention. This dissertation identified and solved major theoretical and practical hurdles to the application of secure information flow. ^ We adopted a minimalist approach to designing our language to ensure a simple lenient type system. We started out with a small simple imperative language and only added features that we deemed most important for practical use. One language feature we addressed is arrays. Due to the various leaking channels associated with array operations, arrays have received complicated and restrictive typing rules in other secure languages. We presented a novel approach for lenient array operations, which lead to simple and lenient typing of arrays. ^ Type inference is necessary because usually a user is only concerned with the security types for input/output variables of a program and would like to have all types for auxiliary variables inferred automatically. We presented a type inference algorithm B and proved its soundness and completeness. Moreover, algorithm B stays close to the program and the type system and therefore facilitates informative error reporting that is generated in a cascading fashion. Algorithm B and error reporting have been implemented and tested. ^ Lastly, we presented a novel framework for developing applications that ensure user information privacy. In this framework, core computations are defined as code modules that involve input/output data from multiple parties. Incrementally, secure flow policies are refined based on feedback from the type checking/inference. Core computations only interact with code modules from involved parties through well-defined interfaces. All code modules are digitally signed to ensure their authenticity and integrity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's wireless networks rely mostly on infrastructural support for their operation. With the concept of ubiquitous computing growing more popular, research on infrastructureless networks have been rapidly growing. However, such types of networks face serious security challenges when deployed. This dissertation focuses on designing a secure routing solution and trust modeling for these infrastructureless networks. ^ The dissertation presents a trusted routing protocol that is capable of finding a secure end-to-end route in the presence of malicious nodes acting either independently or in collusion, The solution protects the network from active internal attacks, known to be the most severe types of attacks in an ad hoc application. Route discovery is based on trust levels of the nodes, which need to be dynamically computed to reflect the malicious behavior in the network. As such, we have developed a trust computational model in conjunction with the secure routing protocol that analyzes the different malicious behavior and quantifies them in the model itself. Our work is the first step towards protecting an ad hoc network from colluding internal attack. To demonstrate the feasibility of the approach, extensive simulation has been carried out to evaluate the protocol efficiency and scalability with both network size and mobility. ^ This research has laid the foundation for developing a variety of techniques that will permit people to justifiably trust the use of ad hoc networks to perform critical functions, as well as to process sensitive information without depending on any infrastructural support and hence will enhance the use of ad hoc applications in both military and civilian domains. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type systems for secure information flow aim to prevent a program from leaking information from H (high) to L (low) variables. Traditionally, bisimulation has been the prevalent technique for proving the soundness of such systems. This work introduces a new proof technique based on stripping and fast simulation, and shows that it can be applied in a number of cases where bisimulation fails. We present a progressive development of this technique over a representative sample of languages including a simple imperative language (core theory), a multiprocessing nondeterministic language, a probabilistic language, and a language with cryptographic primitives. In the core theory we illustrate the key concepts of this technique in a basic setting. A fast low simulation in the context of transition systems is a binary relation where simulating states can match the moves of simulated states while maintaining the equivalence of low variables; stripping is a function that removes high commands from programs. We show that we can prove secure information flow by arguing that the stripping relation is a fast low simulation. We then extend the core theory to an abstract distributed language under a nondeterministic scheduler. Next, we extend to a probabilistic language with a random assignment command; we generalize fast simulation to the setting of discrete time Markov Chains, and prove approximate probabilistic noninterference. Finally, we introduce cryptographic primitives into the probabilistic language and prove computational noninterference, provided that the underling encryption scheme is secure.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sociedade digital nos abraça em todos os aspectos do cotidiano e uma parte significativa da população vive conectada em multiplataformas. Com a instantaneidade dos fluxos de comunicação, vivemos uma rotina onde muitos acessos estão a um “clique” ou toque. A televisão como mídia preponderante durante várias décadas, na sua transição digital comporta uma função além da TV que conhecíamos, como display interativo que se conecta e absorve conteúdos provenientes de várias fontes. Os consagrados modelos mundiais de distribuição de audiovisual, especialmente pelo Broadcast, sofrem as consequências da mudança do comportamento do seu público pelas novas oportunidades de acesso aos conteúdos, agora interativos e sob demanda. Neste contexto, os modelos das SmartTVs (TVs conectadas) em Broadband (Banda Larga) apresentam opções diferenciadas e requerem um espaço cada vez maior na conexão com todos os outros displays. Com este cenário, o presente estudo busca descrever e analisar as novas ofertas de conteúdos, aplicativos, possibilidades e tendências do hibridismo das fontes para a futura TV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Encryption and integrity trees guard against phys- ical attacks, but harm performance. Prior academic work has speculated around the latency of integrity verification, but has done so in an insecure manner. No industrial implementations of secure processors have included speculation. This work presents PoisonIvy, a mechanism which speculatively uses data before its integrity has been verified while preserving security and closing address-based side-channels. PoisonIvy reduces per- formance overheads from 40% to 20% for memory intensive workloads and down to 1.8%, on average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose SETS, a protocol with main aim to provide secure and private communication during emergency situations. SETS achieves security of the exchanged information, attack resilience and user's privacy. In addition, SETS can be easily adapted for mobile devices, since field experimental results show the effectiveness of the protocol on actual smart-phone platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collecting data via a questionnaire and analyzing them while preserving respondents’ privacy may increase the number of respondents and the truthfulness of their responses. It may also reduce the systematic differences between respondents and non-respondents. In this paper, we propose a privacy-preserving method for collecting and analyzing survey responses using secure multi-party computation (SMC). The method is secure under the semi-honest adversarial model. The proposed method computes a wide variety of statistics. Total and stratified statistical counts are computed using the secure protocols developed in this paper. Then, additional statistics, such as a contingency table, a chi-square test, an odds ratio, and logistic regression, are computed within the R statistical environment using the statistical counts as building blocks. The method was evaluated on a questionnaire dataset of 3,158 respondents sampled for a medical study and simulated questionnaire datasets of up to 50,000 respondents. The computation time for the statistical analyses linearly scales as the number of respondents increases. The results show that the method is efficient and scalable for practical use. It can also be used for other applications in which categorical data are collected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud storage has rapidly become a cornerstone of many businesses and has moved from an early adopters stage to an early majority, where we typically see explosive deployments. As companies rush to join the cloud revolution, it has become vital to create the necessary tools that will effectively protect users' data from unauthorized access. Nevertheless, sharing data between multiple users' under the same domain in a secure and efficient way is not trivial. In this paper, we propose Sharing in the Rain – a protocol that allows cloud users' to securely share their data based on predefined policies. The proposed protocol is based on Attribute-Based Encryption (ABE) and allows users' to encrypt data based on certain policies and attributes. Moreover, we use a Key-Policy Attribute-Based technique through which access revocation is optimized. More precisely, we show how to securely and efficiently remove access to a file, for a certain user that is misbehaving or is no longer part of a user group, without having to decrypt and re-encrypt the original data with a new key or a new policy.