946 resultados para Scanning electronic microscopy
Resumo:
Microbes and their exopolysaccharides (EPS) can block xylem vessels, thereby increasing the hydraulic resistance and decreasing the vase life of cut flowers and foliage. Scanning electron microscopy (SEM) provides a powerful tool for investigation of bacteria-induced xylem occlusion. However, conventional preparation protocols for SEM involving chemicals can cause loss of hydrated EPS material, and thereby damage the bacterial biofilms during dehydration. A modified chemical fixation protocol involving pre-fixation with 75 mM lysine plus 2.5% glutaraldehyde followed by the normal fixation in 3% glutaraldehyde was, therefore, tested for improved preservation of bacterial biofilm at the stem-ends of cut Acacia holosericea foliage stems. Stem-end segments with different stages of bacterial growth were obtained from stems stood into water. The lysine-based protocol was compared with four other processing protocols of critical point drying (CPD) without fixation (control), freeze-drying (FD), conventional chemical fixation followed by drying with hexamethyldisilazane (HMDS), and conventional chemical fixation with CPD. The non-fixed control. FD and the glutaraldehyde fixation with HMDS drying gave poor preservation of hydrated material, including bacterial EPS. Conventional glutaraldehyde fixation followed by CPD was superior to these three methods in terms of better preserving the EPS. However, this fourth method gave condensation of biofilms during dehydration. In contrast, the modified lysine-based protocol resulted in superior preservation of EPS and biofilm structure. Thus, this fifth method was the most appropriate for examination of bacterial stem-end blockage in cut ornamentals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes.
Resumo:
Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes
Resumo:
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gd2O3:Eu3+ (4 mol%) nanophosphor co-doped with Li+ ions have been synthesized by low-temperature solution combustion technique in a short time. Powder X-ray diffractometer (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-VIS and photoluminescence (PL) techniques have been employed to characterize the synthesized nanoparticles. It is found that the lattice of Gd2O3:Eu3+ phosphor transforms from monoclinic to cubic as the Li+-ions are doped. Upon 254 nm excitation, the phosphor showed characteristic luminescence D-5(0) -> F-7(J) (J= 0-4) of the Eu3+ ions. The electronic transition located at 626 nm (D-5(0) -> F-7(2)) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (D-5(0) -> F-7(1)). Furthermore, the effects of the Li+ co-doping as well as calcinations temperature on the PL properties have been studied. The results show that incorporation of Li+ ions in Gd2O3:Eu3+ lattice could induce a remarkable improvement of their PL intensity. The emission intensity was observed to be enhanced four times than that of with out Li+-doped Gd2O3:Eu3+. (C) 2010 Elsevier B.V. All rights reserved,
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
An isothermal section of the phase diagram for the system Nd-Pd-O at 1350 K has been established by equilibration of samples representing 13 different compositions and phase identification after quenching by optical and scanning electron microscopy, x-ray diffraction, and energy dispersive analysis of x-rays. The binary oxides PdO and NdO were not stable at 1350 K. Two ternary oxides Nd4PdO7 and Nd2Pd2O5 were identified. Solid and liquid alloys, as well as the intermetallics NdPd3 and NdPd5, were found to be in equilibrium with Nd2O3. Based on the phase relations, three solidstate cells were designed to measure the Gibbs energies of formation of PdO and the two ternary oxides. An advanced version of the solid-state cell incorporating a buffer electrode was used for high-temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MP a as the reference electrode. Electromotive force measurements, conducted from 950 to 1425 K, indicated the presence of a third ternary oxide Nd2PdO4, stable below 1135 (±10) K. Additional cells were designed to study this compound. The standard Gibbs energy of formation of PdO (†f G 0) was measured from 775 to 1125 Kusing two separate cell designs against the primary reference standard for oxygen chemical potential. Based on the thermodynamic information, chemical potential diagrams for the system Nd-Pd-O were also developed.
Resumo:
InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.
Resumo:
There is a research knowledge gap for the dry wear data of nitride treated Stainless Steel in high temperature and high vacuum environment. In order to fill this gap, plasma nitriding was done on austenitic Stainless Steel type AISI 316LN (316LN SS) and dry sliding wear tests have been conducted at 25 degrees C, 200 degrees C and 400 degrees C in high vacuum of 1.6 x 10(-4) bar. The two different slider material (316LN SS and Colmonoy) and two different sliding speeds (0.0576 m/s and 0.167 m/s) have been used. The tribological parameters such as friction coefficient, wear mechanism and volume of metal loss have been evaluated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of the worn pins and rings. Electronic balancing machine was used to record the mass of metal loss during wear tests. The 2D optical profilometer was used to measure the depth of the wear track. The Plasma Nitride treated 316LN SS rings (PN rings) exhibit excellent wear resistance against 316LN SS pin and Colmonoy pin at all temperatures. However, PN ring vs. Colmonoy pin Pair shows better wear resistance than PN ring vs. 316LN SS pin Pair at higher temperature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.
Resumo:
We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).
Resumo:
Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1-1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 A degrees C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d (33) value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1-1 wt%) KNN ceramics exhibited polarization-electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P (r)) and coercive field (E (c)) values are dependent on the B2O3 content and crystallite size.
Resumo:
Composites comprising Poly(Methyl Methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) via melt mixing followed by hot pressing were fabricated. These were characterized using X-ray diffraction, thermo gravimetric, scanning electron microscopy, and Impedance analyzer for their structural, morphology, and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. The composite, with 38 Vol % of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low frequency relaxation is attributed to the space charge polarization/MWS effect. Theoretical models were employed to rationalize the dielectric behavior of these composites. At higher temperatures, the relaxation peak shifts to higher frequencies, due to the merging of both beta and alpha relaxations into a single dielectric dispersion peak. The AC conductivity in the high frequency region was attributed to the electronic polarization. POLYM. ENG. SCI., 54:551-558, 2014. (c) 2013 Society of Plastics Engineers
Resumo:
The thermoelectric figure of merit (zT) can be increased by introduction of additional interfaces in the bulk to reduce the thermal conductivity. In this work, PbTe with a dispersed indium (In) phase was synthesized by a matrix encapsulation technique for different In concentrations. x-Ray diffraction analysis showed single-phase PbTe with In secondary phase. Rietveld analysis did not show In substitution at either the Pb or Te site, and this was further confirmed by room-temperature Raman data. Low-magnification (similar to 1500x) scanning electron microscopy images showed micrometer-sized In dispersed throughout the PbTe matrix, while at high magnification (150,000x) an agglomeration of PbTe particles in the hot-pressed samples could be seen. The electrical resistivity (rho) and Seebeck coefficient (S) were measured from 300 K to 723 K. Negative Seebeck values showed all the samples to be n-type. A systematic increase in resistivity and higher Seebeck coefficient values with increasing In content indicated the role of PbTe-In interfaces in the scattering of electrons. This was further confirmed by the thermal conductivity (kappa), measured from 423 K to 723 K, where a greater reduction in the electronic as compared with the lattice contribution was found for In-added samples. It was found that, despite the high lattice mismatch at the PbTe-In interface, phonons were not scattered as effectively as electrons. The highest zT obtained was 0.78 at 723 K for the sample with the lowest In content.
Resumo:
Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.