999 resultados para Sand waves.
Resumo:
The influence of particle shape on the stress-strain response of fine silica sand is investigated experimentally. Two sands from the same source and with the same particle size distribution were examined using Fourier descriptor analysis for particle shape. Their grains were, on average, found to have similar angularity but different elongation. During triaxial stress path testing, the stress-strain behavior of the sands for both loading and creep stages were found to be influenced by particle elongation. In particular, the behavior of the sand with less elongated grains was more like that of rounded glass beads during creep. The results highlight the role of particle shape in stress transmission in granular packings and suggest that shape should be taken more rigorously into consideration in characterizing geomaterials. © 2005 Taylor & Francis Group.
Resumo:
This paper is the third part of a report on systematic measurements and analyses of wind-generated water waves in a laboratory environment. The results of the measurements of the turbulent flow on the water side are presented here, the details of which include the turbulence structure, the correlation functions, and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the water surface due to micro-breaking, which reflects that the Reynolds shear stress is of the order u *w 2. The vertical velocities of the turbulence are related to the relevant velocity scale at the still-water level. The autocorrelation function in the vertical direction shows features of typical anisotropic turbulence comprising a large range of wavelengths. The ratio between the microscale and macroscale can be expressed as λ/Λ=a Re Λ n, with the exponent n slightly different from -1/2, which is the value when turbulence production and dissipation are in balance. On the basis of the wavelength and turbulent velocity, the free-surface flows in the present experiments fall into the wavy free-surface flow regime. The integral turbulent scale on the water side alone underestimates the degree of disturbance at the free surface. © 2012 Elsevier B.V.
Resumo:
Discrete particle simulations of column of an aggregate of identical particles impacting a rigid, fixed target and a rigid, movable target are presented with the aim to understand the interaction of an aggregate of particles upon a structure. In most cases the column of particles is constrained against lateral expansion. The pressure exerted by the particles upon the fixed target (and the momentum transferred) is independent of the co-efficient of restitution and friction co-efficient between the particles but are strongly dependent upon the relative density of the particles in the column. There is a mild dependence on the contact stiffness between the particles which controls the elastic deformation of the densified aggregate of particles. In contrast, the momentum transfer to a movable target is strongly sensitive to the mass ratio of column to target. The impact event can be viewed as an inelastic collision between the sand column and the target with an effective co-efficient of restitution between 0 and 0.35 depending upon the relative density of the column. We present a foam analogy where impact of the aggregate of particles can be modelled by the impact of an equivalent foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally and yet give predictions to within 5% of the full discrete particle calculations. They also suggest that "model" materials can be used to simulate the loading by an aggregate of particles within a laboratory setting. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the framework of the Italian research project ReLUIS-DPC, a set of centrifuge tests were carried out at the Schofield Centre in Cambridge (UK) to investigate the seismic behaviour of tunnels. Four samples of dry sand were prepared at different densities, in which a small scale model of circular tunnel was inserted, instrumented with gauges measuring hoop and bending strains. Arrays of accelerometers in the soil and on the box allowed the amplification of ground motion to be evaluated; LVDTs measured the soil surface settlement. This paper describes the main results of this research, showing among others the evolution of the internal forces during the model earthquakes at significant locations along the tunnel lining. © 2010 Taylor & Francis Group, London.
Resumo:
The consistency of laboratory sand model preparation for physical testing is a fundamental criterion in representing identical geotechnical issues at prototype scale. This objective led to the development of robotic apparatus to eliminate the non-uniformity in manual pouring. Previous studies have shown consistent sand models with high relative density between 50 to 90% produced by the automatic moving-hopper sand pourer at the University of Cambridge, based primarily on a linear correlation to flow rate. However, in the case of loose samples, the influence of other parameters, particularly the drop height, becomes more apparent. In this paper, findings on the effect of flow rate and drop height are discussed in relation to the layer thickness and relative density of loose sand samples. Design charts are presented to illustrate their relationships. The effect of these factors on different sand types is also covered to extend the use of the equipment. © 2010 Taylor & Francis Group, London.
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
A newly developed computer model, which solves the horizontal two-dimensional Boussinesq equations using a total variation diminishing Lax-Wendroff scheme, has been used to study the runup of solitary waves, with various heights, on idealized conical islands consisting of side slopes of different angles. This numerical model has first been validated against high-quality laboratory measurements of solitary wave runups on a uniform plane slope and on an isoliated conical island, with satisfactory agreement being achieved. An extensive parametric study concerning the effects of the wave height and island slope on the solitary wave runup has subsequently been carried out. Strong wave shoaling and diffraction effects have been observed for all the cases investigated. The relationship between the runup height and wave height has been obtained and compared with that for the case on uniform plane slopes. It has been found that the runup on a conical island is generally lower than that on a uniform plane slope, as a result of the two-dimensional effect. The correlation between the runup with the side slope of an island has also been identified, with higher runups on milder slopes. This comprehensive study on the soliton runup on islands is relevant to the protection of coastal and inland regions from extreme wave attacks. © the Coastal Education & Research Foundation 2012.
Resumo:
This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.
Resumo:
A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.