931 resultados para SUBSTITUTED SEMIFLEXIBLE POLYMERS
Resumo:
Studies toward the construction of functionalised piperidone derivatives from derivatives of Baylis-Hillman adducts are described. Interestingly the 6-oxo-4-aryl-piperidine-3-carboxylates generated during the study serve as precursor for the facile synthesis of 4-oxo-6-aryl-3-aza-bicyclo[3.1.0]hexane-1-carboxylates
Resumo:
An alternate approach to densely substituted quinolines from the products of SN2 nucleophilic substitution reaction between the acetyl derivatives of the Baylis-Hillman adducts obtained from 2-nitrobenzaldehydes and the carbonyl group containing carbon nucleophiles is described. Treatment of these compounds with SnCl2, trigger a tandem reaction wherein reduction of the nitro group is followed by a remarkably regioselective intramolecular cyclization and subsequent dehydrogenation to afford 4-(substituted vinyl)-quinolines.
Resumo:
1-[(3’-Diethylaminopropyl)-3-(substitutedphenylmethylene) pyrrolidines] were synthe-sized and evaluated for CQ resistant reversal activity. The compounds of the series elicit better biological response than their phenyl methyl analogues in general. The most active compound 4b has been evaluated in vivo in details and the results are presented. The possible mode of action of the compounds of this series is by inhibition of the enzyme heme oxygenase, thereby increasing the levels of heme and hemozoin, which are lethal to the parasite.
Resumo:
The human immunodeficiency virus-1 reverse transcriptase inhibitory activity of 2-(2,6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4-ones have been analyzed using combinatorial protocol in multiple linear regression (CP-MLR) with several electronic and molecular surface area features of the compounds obtained from Molecular Operating Environment (MOE) software. The study has indicated the role of different charged molecular surface areas in modeling the inhibitory activity of the compounds. The derived models collectively suggested that the compounds should be compact without bulky substitutions on its peripheries for better HIV-1 RT inhibitory activity. It also emphasized the necessity of hydrophobicity and compact structural features for their activity. The scope of the descriptors identified for these analogues have been verified by extending the dataset with different 2-(disubstituted phenyl)-3-(substituted pyridin-2-yl)-thiazolidin-4-ones. The joint analysis of extended dataset highlighted the information content of identified descriptors in modeling the HIV-1 RT inhibitory activity of the compounds.
Resumo:
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.
Resumo:
A molecular, porous crystalline material constructed from neutral helical coordination polymers incorporating manganese(II) ions and two types of bridging ligands, namely the deprotonated form of 2-hydroxy-5-methoxy-3-nitrobenzaldehyde (HL) and isobutyrate (iB−), has been obtained and structurally characterized. Structural analysis reveals that within the coordination polymer each benzaldehyde derivative ligates two manganese ions in 6-membered chelating rings, and the isobutyrate ligands cooperatively chelate either two or three manganese ions. The solid state assembly of the resulting polymeric chains of formula [Mn4(L)2(iB)6]n (1), described in the polar space group R3c, is associated with tubular channels occupied by MeCN solvent molecules (1·xMeCN; x ≤ 9). TGA profiles and PXRD measurements demonstrate that the crystallinity of the solid remains intact in its fully desolvated form, and its stability and crystallinity are ensured up to a temperature of 190 °C. Gas adsorption properties of desolvated crystals were probed, but no remarkable sorption capacity of N2 and only a limited one for CO2 could be observed. Magnetic susceptibility data reveal an antiferromagnetic type of coupling between adjacent manganese(II) ions along the helical chains with energy parameters J1 = −5.9(6) cm−1 and J2 = −1.8(9) cm−1.
Resumo:
Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.
Resumo:
One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)
Resumo:
One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)
Resumo:
Self – assembly is a powerful tool for the construction of highly organized nanostructures [1]. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. Herein, we demonstrate that designed molecule Py3 forms dimensionally - defined supramolecular assemblies under thermodynamic conditions in water [2]. To study Py3 self-assembly, we carried out whole set of spectroscopic and microscopic experiments. The factors influencing stability, morphology and behavior of «nanosheets» in multicomponent systems are discussed
Resumo:
Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).