982 resultados para SUBBASE GRANULAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated  thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The  results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoreactivity against the abalone egg-laying hormone (aELH) was detected in the fine granules of type 1 and 2 neurosecretory (NS) cells, neurites in the neuropil, and blood sinuses in the connective tissue sheath of the cerebral, pleuropedal, and visceral ganglia of the tropical abalone, Haliotis asinina Linnaeus. The number of positive NS cells, and the intensity of staining in the ganglia, varied and might be related to the stage of ovarian cycle. At any stage, positive cells were most numerous in the pleuropedal, and least numerous in the visceral ganglion. In addition, several cells of the statocyst and associated nerves also exhibited the immunoreactivity. In the ovary, the most intense reactivity was detected in the follicular and granular cells adjacent to mature oocytes, in the trabeculae and the ovarian capsule. The cytoplasm of mature oocytes was also moderately stained. The results indicate that the cerebral, pleuropedal, and visceral ganglia are the main sites of aELH-producing cells. The ovary may also produce aELH locally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents and empirical study in which we examine the process of preserential attachment as it applies to business enterprises on the World Wide Web.  Using randomly selected business Web pages as nodes and their inbound links as edges, we explre the role of parked domain names in link creation and preferential attachment at very granular levels.  Our research leads us to the conclusion that the abundance of parked domain name sites does not present a plausible explanation for preferential attachment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The systems based on granular mesoporous nanofibrous carbonaceous (NFC) materials synthesized by decomposition of hydrocarbons over nickel- containing catalysts are promising catalysts for selective oxidation of hydrogen sulfide. Sample series of nanofibrous carbon with three main types of their fiber structures and different contents of metal catalysts inherited from the catalysts for their synthesis were studied in this reaction. The correlation between NFC structure and its activity and selectivity in hydrogen sulfide oxidation was determined. The metal inherited from the initial catalysts for the synthesis of NFC influences the activity and selectivity of the resulting carbon catalysts. A particular influence is observed in the case of the catalyst withdrawn from the synthesis reactor at the stage of stationary operation of the metal catalyst (low specific carbon yields per unit weight of the catalyst). The presence of the metal phase results in an increase in the carbon catalyst activity and in a decrease in the selectivity to sulfur. NFC samples with the highest activity and selectivity are nanotubes and those with graphite planes perpendicular to the axis of the fibers. Carbon nanotubes have high selectivity, while samples obtained on copper–nickel catalysts also possess high activity. The promising NFC catalysts provide high conversion and selectivity (almost independent of the molar oxygen/hydrogen sulfide ratio) when a large excess of oxygen is contained in the reaction mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data perturbation is a popular method to achieve privacy-preserving data mining. However, distorted databases bring enormous overheads to mining algorithms as compared to original databases. In this paper, we present the GrC-FIM algorithm to address the efficiency problem in mining frequent itemsets from distorted databases. Two measures are introduced to overcome the weakness in existing work: firstly, the concept of independent granule is introduced, and granule inference is used to distinguish between non-independent itemsets and independent itemsets. We further prove that the support counts of non-independent itemsets can be directly derived from subitemsets, so that the error-prone reconstruction process can be avoided. This could improve the efficiency of the algorithm, and bring more accurate results; secondly, through the granular-bitmap representation, the support counts can be calculated in an efficient way. The empirical results on representative synthetic and real-world databases indicate that the proposed GrC-FIM algorithm outperforms the popular EMASK algorithm in both the efficiency and the support count reconstruction accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reverse osmosis (RO) is currently one of the most prevalent methods used for seawater desalination. During the past four decades, the research anddevelopment has reduced the energy consumption from about 20 to 4 kWh/m3, while improvements in membrane science has led to a 20-fold increase in the specific membrane flux. Nevertheless, research is still underway to reduce the operation and maintenance problems and thus improve the performance of RO systems. The most important maintenance problem associated with RO operation is the membrane fouling, especially biological fouling (biofouling). This work focuses on the aspects to eliminate biofouling in RO membranes, by adopting a proper pretreatment system. The experimental results revealed that fluidized bed biological granular activated carbon, at 15 min empty bed contact time (with dissolved organic carbon, DOC concentration of 6–8 mg/L) can be utilized effectively to remove nearly 100% biodegradable DOC from seawater. Continuous experiments of membrane bioreactor (MBR) have been conducted concomitantly to gain insight into the long-term effects of MBR on biodegradable organic content removal and biofouling control. The results show that MBR system produced better effluent with 78% DOC removal and quasi-total biodegradable DOC removal. Dissolved oxygen was not a limiting factor for the DOC degradation. Short-term experimental runs were conducted with RO membrane using both pretreated and non-pretreated seawater. The results showed that filtrate from MBR yielded the highest permeate flux improvement, which was approximately 300% compared with non-pretreated seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle size and size distribution is an important parameter in solid liquid separation process especially in granular bed filtration and in dynamic microfiltration. This paper discusses their effects on the above processes from extensive experimental data obtained. In granular bed filtration, the experimental results showed that the initial efficiency follows the pattern reported by previous experimental and theoretical studies, i.e., lower efficiency for particles which fall in the range of critical size of 1 m. However, the particle removal during the transient stage increased with an increase in particle size for the range of sizes studied. An attempt was made to quantify these effects in granular bed filtration using semi-empirical approach. In dynamic membrane filtration also, the particle size plays a major role in the retention. However, despite the relative thickness of the membrane (compared to particle size) dynamic microfiltration appears more as a sieving process; the retention is mainly related to the largest pore size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present for the first time a real-time small-angle X-ray scattering (SAXS) study of the structural transition of fluid microemulsion to solid polymerized material in a silicone polymerizable microemulsion system. A reactive methacrylate-terminated siloxane macromonomer (MTSM, Mn ∼ 1000 g/mol) was synthesized and used for microemulsion formulations comprising MTSM (oil phase), water, and a mixture of nonionic surfactant (Teric G9A8) with isopropanol. In situ synchrotron SAXS was used to investigate time-dependent nanostructure evolution during the polymerization reaction, which was directly initiated by X-ray radiation. The SAXS data were analyzed using both the Teubner-Strey model and the core-shell model. The results obtained by the Teubner-Strey model showed that the domain size (d) decreased while the correlation length (ξ) increased upon polymerization. The analysis in terms of the core-shell model displayed that adding water to the precursor microemulsion caused the water droplets to start swelling, which resulted in the discontinuity of water in oil microemulsion. There exhibited large differences in morphologies of polymerized materials from the microemulsion formulations with different water and surfactant contents. The core and shell sizes of water droplets decreased during the course of polymerization when there was 15 wt % or more water in the microemulsion formulation; the polymerized material thus exhibited increasingly discrete granular morphology. When there was 10 wt % or less water content in the precursor microemulsion, the rearrangement of water domains could be minimized during the course of polymerization and transparent polymerized material was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agricultural discharge of herbicides to the Great Barrier Reef (GBR) poses significant threat to the marine ecosystem. This study evaluates the performance of a hybrid treatment system consists of a membrane bioreactor (MBR), UV disinfection unit and a granular activated carbon (GAC) column in treating Ametryn which is one of the major herbicides in agricultural discharges. While the MBR alone removes only 40% of Ametryn at a hydraulic retention time of 7.8 hours, the hybrid system removed Ametryn to below detection levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agro-industries are a life-line for sustainable future of human kind. However, the wastewater generated by agro-industries poses direct threat to the same sustainable future by polluting the freshwater sources when discharged into those freshwater sources. Thus, we need both advanced treatment technologies to treat those wastewater streams generated and better reuse practices for the treated effluents. Reverse osmosis (RO) is one of the advanced treatments to treat dissolved solids that are present in agricultural wastewater streams. But, RO is very sensitive to suspended solids (SS) present in the wastewater streams. Those SS can foul the RO membrane and make it ineffective in producing treated effluent at desired rates. Therefore, suitable pre-treatment scheme is necessary to treat the agro-wastewater streams before passing through RO. This study focuses on the qualitative and quantitative ranking of the available conventional and modern pre-treatment technologies as pre-treatment for RO. This study considers wastewater that has been treated through a secondary treatment system for example activated sludge process as the target water that needs pre-treatment. Based on qualitative ranking of conventional pre-treatment options, the Lime clarification/Granular Media filtration (GMF) option is ranked as the best; whereas finescreens/ micro-screens option ranked as the least preferred option based on the scores they attained in treating the water quality parameters that are considered essential. Based on the quantitative ranking, the low pressure membrane technology such as ultra-filtration (UF) stood first and microfiltration (MF) stood last.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans perceive entities such as objects, patterns, events, etc. as concepts, which are the basic units in human intelligence and communications. In addition, perceptions of these entities could be abstracted and generalised at multiple levels of granularity. In particular, such granulation allows the formation and usage of concepts in human intelligence. Such natural granularity in human intelligence could inspire and motivate the design and development of pattern identification approach in Data Mining. In our opinion, a pattern could be perceived at multiple levels of granularity and thus we advocate for the co-existence of hierarchy and granularity. In addition, granular patterns exist across different sources of data (multimodality). In this paper, we present a cognitive model that incorporates the characteristics of Hierarchy, Granularity and Multimodality for multi-view patterns identification in crime domain. Such framework is implemented with Growing Self Organising Maps (GSOM) and some experimental results are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data includes EBSD orientation maps of the specimens preheated at 1200 degrees celsius, and deformed at 1100 degrees celsius with 30% reduction and control cooled at the rates of 1, 18, and 95 degrees per second. The resultant microstructures correspond to quasipolygonal ferrite plus granular bainite, and lath bainite, respectively.