991 resultados para STRUCTURAL ADJUSTMENT
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
Employment flexibility is commonly associated to greater labour mobility and thus faster cross-regional adjustments. The literature however offers very little hard evidence on this and quite limited theoretical guidance. This paper examines empirically the relationship between employment flexibility and cross-regional adjustment (migration) at the regional and local levels in the UK. Employment flexibility is associated to higher labour mobility (but only at a rather localised scale) and at the same time seems to reduce the responsiveness of migration to unemployment. This suggest that rising flexibility may be linked to higher persistence in spatial disparities, as intra-regional adjustments are strengthened while extraregional adjustments weakened. Keywords: Employment flexibility, regional migration, labour market adjustment JEL Codes: R11, R23, J08, J61
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
his paper proposes a structural investigation of the Turtle Mountain anticline (Alberta, Canada) to better understand the role of the different tectonic features on the development of both local and large scale rock slope instabilities occurring in Turtle Mountain. The study area is investigated by combining remote methods with detailed field surveys. In particular, the benefit of Terrestrial Laser Scanning for ductile and brittle tectonic structure interpretations is illustrated. The proposed tectonic interpretation allows the characterization of the fracturing pattern, the fold geometry and the role of these tectonic features in rock slope instability development. Ten discontinuity sets are identified in the study area, their local variations permitting the differentiation of the study zone into 20 homogenous structural domains. The anticline is described as an eastern verging fold that displays considerable geometry differences along its axis and developed by both flexural slip and tangential longitudinal strain folding mechanisms. Moreover, the origins of the discontinuity sets are determined according to the tectonic phases affecting the region (pre-folding, folding, post-folding). The localization and interpretation of kinematics of the different instabilities revealed the importance of considering the discrete brittle planes of weakness, which largely control the kinematic release of the local instabilities, and also the rock mass damage induced by large tectonic structures (fold hinge, thrust).
Resumo:
A major advance in our understanding of the natural history of Schistosoma haematobium-related morbidity has come through the introduction of the portable ultrasound machines for non-invasive examination of the kidneys and bladder. With the use of generators or battery packs to supply power in non-clinical field settings, and with the use of instant photography or miniaturized thermal printers to record permanent images, it is possible to examine scores of individuals in endemic communities every day. Broad-based ultrasound screening has allowed better definition of age-specific disease risks in urinary schistosomiasis. Results indicate that urinary tract abnormalities are common (18% overall prevalence) in S. haematobium transmission areas, with a 2-4% risk of either severe bladder abnormality or advanced ureteral obstruction. In longitudinal surveys, ultrasound studies have shown that praziquantel and metrifonate therapy are rapidly effective in reversing urinary tract abnormalities among children. The benefits of treating adults are less well known, but research in progress should help to define this issue. Similarly, the prognosis of specific ultrasound findings needs to be clarified, and the ease of sonographic examination will make such long-term follow-up studies feasible. In summary, the painless, quick, and reproducible ultrasound examination has become an essential tool in the study of urinary schistosomiasis.
Resumo:
BACKGROUND: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). METHODS: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.
Resumo:
In eukaryotes, homologous recombination proteins such as RAD51 and RAD52 play crucial roles in DNA repair and genome stability. Human RAD52 is a member of a large single-strand annealing protein (SSAP) family [1] and stimulates Rad51-dependent recombination [2, 3]. In prokaryotes and phages, it has been difficult to establish the presence of RAD52 homologs with conserved sequences. Putative SSAPs were recently found in several phages that infect strains of Lactococcus lactis[4]. One of these SSAPs was identified as Sak and was found in the virulent L. lactis phage ul36, which belongs to the Siphoviridae family [4, 5]. In this study, we show that Sak is homologous to the N terminus of human RAD52. Purified Sak binds single-stranded DNA (ssDNA) preferentially over double-stranded DNA (dsDNA) and promotes the renaturation of long complementary ssDNAs. Sak also binds RecA and stimulates homologous recombination reactions. Mutations shown to modulate RAD52 DNA binding [6] affect Sak similarly. Remarkably, electron-microscopic reconstruction of Sak reveals an undecameric (11) subunit ring, similar to the crystal structure of the N-terminal fragment of human RAD52 [7, 8]. For the first time, we propose a viral homolog of RAD52 at the amino acid, phylogenic, functional, and structural levels.
Resumo:
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.
Resumo:
ABSTRACT This dissertation investigates the, nature of space-time as described by the theory of general relativity. It mainly argues that space-time can be naturally interpreted as a physical structure in the precise sense of a network of concrete space-time relations among concrete space-time points that do not possess any intrinsic properties and any intrinsic identity. Such an interpretation is fundamentally based on two related key features of general relativity, namely substantive general covariance and background independence, where substantive general covariance is understood as a gauge-theoretic invariance under active diffeomorphisms and background independence is understood in the sense that the metric (or gravitational) field is dynamical and that, strictly speaking, it cannot be uniquely split into a purely gravitational part and a fixed purely inertial part or background. More broadly, a precise notion of (physical) structure is developed within the framework of a moderate version of structural realism understood as a metaphysical claim about what there is in the world. So, the developement of this moderate structural realism pursues two main aims. The first is purely metaphysical, the aim being to develop a coherent metaphysics of structures and of objects (particular attention is paid to the questions of identity and individuality of these latter within this structural realist framework). The second is to argue that moderate structural realism provides a convincing interpretation of the world as described by fundamental physics and in particular of space-time as described by general relativity. This structuralist interpretation of space-time is discussed within the traditional substantivalist-relationalist debate, which is best understood within the broader framework of the question about the relationship between space-time on the one hand and matter on the other. In particular, it is claimed that space-time structuralism does not constitute a 'tertium quid' in the traditional debate. Some new light on the question of the nature of space-time may be shed from the fundamental foundational issue of space-time singularities. Their possible 'non-local' (or global) feature is discussed in some detail and it is argued that a broad structuralist conception of space-time may provide a physically meaningful understanding of space-time singularities, which is not plagued by the conceptual difficulties of the usual atomsitic framework. Indeed, part of these difficulties may come from the standard differential geometric description of space-time, which encodes to some extent this atomistic framework; it raises the question of the importance of the mathematical formalism for the interpretation of space-time.
Resumo:
In most health care systems where a prospective payment system is implemented, an outlier payment is used to cover the hospitals' unusually high costs. When the hospital chooses its cost reduction effort before observing a patient's severity, we show that the best outlier payment is based on the realized cost when the hospital exerts the first best level of effort, for any level of severity. [Authors]
Resumo:
Schizophrenia, which results from an interaction between gene and environmental factors, is a psychiatric disorder characterized by reality distortion. The clinical symptoms, which are generally diagnosed in late adolescence or early adulthood, partly derive from altered brain connectivity especially in prefrontal cortex. Disruption of neuronal networks implies oligodendrocyte and myelin abnormalities in schizophrenia pathophysiology. The mechanisms of these impairments are still unclear. Converging evidences indicate a role of redox dysregulation, generated by an imbalance between pro-oxidants and antioxidant defense mechanisms, in the development of schizophrenia pathophysiology. In particular, genetic and biochemical data indicate impaired synthesis of glutathione, the main cellular antioxidant and redox regulator. As oligodendrocyte maturation is dependent on redox state, we evaluated whether abnormal redox control could contribute to oligodendrocyte and myelin impairments in schizophrenia. We found that glutathione in prefrontal cortex of early psychosis patients and control subjects positively correlated with white matter integrity. We then further explored the interplay between glutathione and myelin using a translational approach. Our data showed that in mice with genetically impaired glutathione synthesis, oligodendrocyte late maturation as well as myelination was delayed in the anterior cingulate cortex. Specifically, oligodendrocyte number and myelin levels were lowered at peripubertal age, coincident in time with the peak of myelin- related gene expression during normal brain development. These data suggest that early adolescence is a vulnerable developmental period during which an adequate redox control is required for oligodendrocyte maturation and active myelination process. Consistently, oxidative stress mediated by psychosocial stress also delayed myelination in peripubertal mice. At cellular levels, impaired glutathione synthesis altered oligodendrocyte development at several levels. Using oligodendrocyte progenitor cells cultures, our data showed that glutathione deficiency was associated with (i) cell cycle arrest and a reduction in oligodendrocyte proliferation, and (ii) an impairment in oligodendrocyte maturation. Abnormal oligodendrocyte proliferation was mediated by upregulation of Fyn kinase activity. Consistently, under oxidative stress conditions, we observed abnormal regulation of Fyn kinase in fibroblasts of patients deficient in glutathione synthesis. Together, our data support that a redox dysregulation due to glutathione deficit could underlie myelination impairment in schizophrenia, possibly mediated by dysregulated Fyn pathway. Better characterization of Fyn mechanisms would pave the way towards new drug targets. -- La schizophrénie est une maladie psychiatrique qui se définit par une distorsion de la perception de la réalité. Les symptômes cliniques sont généralement diagnostiqués durant l'adolescence ou au début de l'âge adulte et proviennent de troubles de la connectivité, principalement au niveau du cortex préfrontal. Les dysfonctionnements des réseaux neuronaux impliquent des anomalies au niveau des oligodendrocytes et de la myéline dans la pathophysiologie de la schizophrénie. Les mécanismes responsables des ces altérations restent encore mal compris. Dans le développement de la schizophrénie, des évidences mettent en avant un rôle de la dérégulation rédox, traduit par un déséquilibre entre facteurs pro-oxydants et défenses antioxydantes. Des données génétiques et biochimiques indiquent notamment un défaut de la synthèse du glutathion, le principal antioxydant et rédox régulateur des cellules. Etant donné que la maturation des oligodendrocytes est dépendante de l'état rédox, nous avons regardé si une dérégulation rédox contribue aux anomalies de la myéline dans le cadre de la schizophrénie. Dans le cortex préfrontal des sujets contrôles et des patients en phase précoce de psychose, nous avons montré que le glutathion était positivement associé à l'intégrité de matière blanche. Afin d'explorer plus en détail la relation entre le glutathion et la myéline, nous avons mené une étude translationnelle. Nos résultats ont montré que des souris ayant un déficit de la synthèse du glutathion présentaient un retard dans les processus de maturation des oligodendrocytes et de la myélinisation dans le cortex cingulaire antérieure. Plus précisément, le nombre d'oligodendrocytes et le taux de myéline étaient uniquement diminués durant la période péripubertaire. Cette même période correspond au pic de l'expression des gènes en lien avec la myéline. Ces données soulignent le fait que l'adolescence est une période du développement particulièrement sensible durant laquelle un contrôle adéquat de l'état rédox est nécessaire aux processus de maturation des oligodendrocytes et de myélinisation. Ceci est en accord avec la diminution de myéline observée suite à un stress oxydatif généré par un stress psychosocial. Au niveau cellulaire, un déficit du glutathion affecte le développement des oligodendrocytes à différents stades. En effet, dans des cultures de progéniteurs d'oligodendrocytes, nos résultats montrent qu'une réduction du taux de glutathion était associée à (i) un arrêt du cycle cellulaire ainsi qu'une diminution de la prolifération des oligodendrocytes, et à (ii) des dysfonctionnements de la maturation des oligodendrocytes. Par ailleurs, au niveau moléculaire, les perturbations de la prolifération étaient générées par une augmentation de l'activité de la kinase Fyn. Ceci est en accord avec la dérégulation de Fyn observée dans les fibroblastes de patients ayant une déficience en synthèse du glutathion en condition de stress oxydatif. Les résultats de cette thèse soulignent qu'une dérégulation rédox induite par un déficit en glutathion peut contribuer aux anomalies des oligodendrocytes et de la myéline via le dysfonctionnement des voies de signalisation Fyn. Une recherche plus avancée de l'implication de Fyn dans la maladie pourrait ouvrir la voie à de nouvelles cibles thérapeutiques.