939 resultados para STATISTICAL DATA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contribution from Bureau of home economics in cooperation with Works progress administration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose - Measurements obtained from the right and left eye of a subject are often correlated whereas many statistical tests assume observations in a sample are independent. Hence, data collected from both eyes cannot be combined without taking this correlation into account. Current practice is reviewed with reference to articles published in three optometry journals, viz., Ophthalmic and Physiological Optics (OPO), Optometry and Vision Science (OVS), Clinical and Experimental Optometry (CEO) during the period 2009–2012. Recent findings - Of the 230 articles reviewed, 148/230 (64%) obtained data from one eye and 82/230 (36%) from both eyes. Of the 148 one-eye articles, the right eye, left eye, a randomly selected eye, the better eye, the worse or diseased eye, or the dominant eye were all used as selection criteria. Of the 82 two-eye articles, the analysis utilized data from: (1) one eye only rejecting data from the adjacent eye, (2) both eyes separately, (3) both eyes taking into account the correlation between eyes, or (4) both eyes using one eye as a treated or diseased eye, the other acting as a control. In a proportion of studies, data were combined from both eyes without correction. Summary - It is suggested that: (1) investigators should consider whether it is advantageous to collect data from both eyes, (2) if one eye is studied and both are eligible, then it should be chosen at random, and (3) two-eye data can be analysed incorporating eyes as a ‘within subjects’ factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62P10, 92C40

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Világbank az 1990-es évek végén egy nagyszabású, nemzetközi teljesítmény-értékelési programot indított a víz- és szennyvíz-szolgáltató vállalatok körében. Az International Benchmarking Network for Water and Sanitation Utilities (IBNET) elnevezésű kezdeményezés keretében a szolgáltatók egy szabványosított kérdőíven információt adnak meg működésükről. Az egyedi, cégszintű adatokból egy adatbázis készül, mely lehetővé teszi a vállalatok működésének összehasonlító elemzését, amit teljesítmény-értékelésnek (benchmarking) is szokás nevezni. A programról és eddigi eredményeiről angol nyelvű információ a www.ib-net.org honlapon található. A felmérést eddig több, mint 70 országban végezték el, köztük Magyarországon is. Itthon a REKK kapott megbízást a feladat végrehajtására. Az adatgyűjtésen túl az adatbázisra alapozva Közép és Kelet-Európa országainak víziközmű cégeiről statisztikai elemzést végeztünk az alap adottságok és a költségek összefüggésének feltárására.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^