880 resultados para SODIUM-CHANNELS
Resumo:
AIM: Managing neonatal Bartter syndrome by achieving adequate weight gain is challenging. We assessed the correlation between weight gain in neonatal Bartter syndrome and the introduction of fluid and sodium supplementations and indomethacin during the first 4 weeks of life. METHODS: Daily fluid and electrolytes requirements were analysed using linear regression and Spearman correlation coefficients. The weight gain coefficient was calculated as daily weight gain after physiological neonatal weight loss. RESULTS: We studied seven infants. The highest weight gain coefficients occurred between weeks two and four in the five neonates who either received prompt amounts of fluid (maximum 810 mL/kg/day) and sodium (maximum 70 mmol/kg/day) or were treated with indomethacin. For the two patients with the highest weight gain coefficient, water and sodium supplementations were decreased in weeks two to four leading to a significant negative Spearman correlation between weight gain and fluid supplements (r = -0.55 and -0.68) and weight gain and sodium supplementations (r = -0.96 and -0.72). The two patients with the lowest weight gain coefficient had positive Spearman correlation coefficients between weight gain and fluid and sodium supplementations. CONCLUSION: Infants with neonatal Bartter syndrome required rapid and enormous fluid and sodium supplementations or the early introduction of indomethacin treatment to achieve adequate weight gain during the early postnatal period.
Resumo:
G protein-gated inwardly rectifying potassium (GIRK) channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b), which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA) domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-DRA) prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A) in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N) occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability.
Resumo:
The chicken acid-sensing ion channel ASIC1 has been crystallized as a homotrimer. We address here the oligomeric state of the functional ASIC1 in situ at the cell surface. The oligomeric states of functional ASIC1a and mutants with additional cysteines introduced in the extracellular pore vestibule were resolved on SDS-PAGE. The functional ASIC1 complexes were stabilized at the cell surface of Xenopus laevis oocytes or CHO cells either using the sulfhydryl crosslinker BMOE, or sodium tetrathionate (NaTT). Under these different crosslinking conditions ASIC1a migrates as four distinct oligomeric states that correspond by mass to multiples of a single ASIC1a subunit. The relative importance of each of the four ASIC1a oligomers was critically dependent on the availability of cysteines in the transmembrane domain for crosslinking, consistent with the presence of ASIC1a homo-oligomers. The expression of ASIC1a monomers, trimeric or tetrameric concatemeric cDNA constructs resulted in functional channels. The resulting ASIC1a complexes are resolved as a predominant tetramer over the other oligomeric forms, after stabilization with BMOE or NaTT and SDS-PAGE/western blot analysis. Our data identify a major ASIC1a homotetramer at the surface membrane of the cell expressing functional ASIC1a channel.
Resumo:
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.
Resumo:
Anthropomorphic model observers are mathe- matical algorithms which are applied to images with the ultimate goal of predicting human signal detection and classification accuracy across varieties of backgrounds, image acquisitions and display conditions. A limitation of current channelized model observers is their inability to handle irregularly-shaped signals, which are common in clinical images, without a high number of directional channels. Here, we derive a new linear model observer based on convolution channels which we refer to as the "Filtered Channel observer" (FCO), as an extension of the channelized Hotelling observer (CHO) and the nonprewhitening with an eye filter (NPWE) observer. In analogy to the CHO, this linear model observer can take the form of a single template with an external noise term. To compare with human observers, we tested signals with irregular and asymmetrical shapes spanning the size of lesions down to those of microcalfications in 4-AFC breast tomosynthesis detection tasks, with three different contrasts for each case. Whereas humans uniformly outperformed conventional CHOs, the FCO observer outperformed humans for every signal with only one exception. Additive internal noise in the models allowed us to degrade model performance and match human performance. We could not match all the human performances with a model with a single internal noise component for all signal shape, size and contrast conditions. This suggests that either the internal noise might vary across signals or that the model cannot entirely capture the human detection strategy. However, the FCO model offers an efficient way to apprehend human observer performance for a non-symmetric signal.
Resumo:
Dans le néphron distal sensible à l'aldostérone, le récepteur aux minéralocorticoïdes (RM) et le récepteur aux glucocorticoids (RG) sont exprimés et peuvent être liés et activés par l'aldostérone et le Cortisol, respectivement. La réabsorption rénale de sodium est principalement contrôlée par le RM. Cependant, des modèles expérimentaux in vitro et in vivo suggèrent que le RG pourrait également jouer un rôle dans le transport rénal du sodium. Afin d'étudier l'implication du RG et/ou du RM exprimés dans les cellules épithéliales adultes dans le transport rénal du sodium, nous avons généré deux modèles de souris, dans lesquelles l'expression du RG (Nr3c1Pax8/LC1) ou du RM (Nr3c2Pax8/LC1) peut être abolie de manière inductible et cela spécifiquement dans les tubules rénaux. Les souris déficientes pour le gène du RM survivent mais développent un phénotype sévère de PHA-1, caractérisé par un retard de croissance, une augmentation des niveaux urinaires de Na+, une diminution de la concentration du Na+ dans le plasma, une hyperkaliémie et une augmentation des niveaux d'aldostérone plasmatique. Ce phénotype empire et devient létal lorsque les souris sont nourries avec une diète déficiente en sodium. Les niveaux d'expression en protéine de NCC, de la forme phosphorylée de NCC et de aENaC sont diminués, alors que l'expression en ARN messager et en protéine du RG est augmentée. Une diète riche en Na+ et pauvre en K+ ne corrige pas la concentration élevée d'aldostérone dans le plasma pour la ramener à des niveaux conformes, mais est suffisante pour corriger la perte de poids et les niveaux anormaux des électrolytes dans le plasma et l'urine. -- In the aldosterone-sensitive distal nephron, both the mineralocorticoid (MR) and the glucocorticoid (GR) receptor are expressed. They can be bound and activated by aldosterone and Cortisol, respectively. Renal Na+ reabsorption is mainly controlled by MR. However, in vitro and in vivo experimental models suggest that GR may play a role in renal Na+ transport. Therefore, to investigate the implication of MR and/or GR in adult epithelial cells in renal sodium transport, we generated inducible renal tubule- specific MR (Nr3c2Pax8/LC1) and GR (Nr3c1Pax8/LC1) knockout mice. MR-deficient mice survived but developed a severe PHA-1 phenotype with failure to thrive, higher urinary Na+, decreased plasma Na+ levels, hyperkalemia and higher levels of plasma aldosterone. This phenotype further worsened and became lethal under a sodium-deficient diet. NCC protein expression and its phosphorylated form, as well as aENaC protein level were downregulated, whereas the mRNA and protein expression of GR was increased. A diet rich in Na+and low in K+ did not normalize plasma aldosterone to control levels, but was sufficient to restore body weight, plasma and urinary electrolytes. Upon switch to a Na+-deficient diet, GR-mutant mice exhibited transient increased urinary Na+ and decreased K+ levels, with transitory higher plasma K+ concentration preceded by a significant increase in plasma aldosterone levels within the 12 hours following diet switch. We found no difference in urinary aldosterone levels, plasma Na+ concentration and plasma corticosterone levels. Moreover, NHE3, NKCC2, NCC
Resumo:
Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.
Resumo:
In this paper we describe the reduction by NaBH4 of some cyclopentanones containing an oxygenated function at the side chain position beta to the carbonyl group, both in the presence and in the absence of CeCl3. Some suggestions for the rationalization of the results are discussed, considering the stereochemical course of the reactions.