925 resultados para Rotating Cylinders
Resumo:
Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted
Resumo:
The concept of slow vortical dynamics and its role in theoretical understanding is central to geophysical fluid dynamics. It leads, for example, to “potential vorticity thinking” (Hoskins et al. 1985). Mathematically, one imagines an invariant manifold within the phase space of solutions, called the slow manifold (Leith 1980; Lorenz 1980), to which the dynamics are constrained. Whether this slow manifold truly exists has been a major subject of inquiry over the past 20 years. It has become clear that an exact slow manifold is an exceptional case, restricted to steady or perhaps temporally periodic flows (Warn 1997). Thus the concept of a “fuzzy slow manifold” (Warn and Ménard 1986) has been suggested. The idea is that nearly slow dynamics will occur in a stochastic layer about the putative slow manifold. The natural question then is, how thick is this layer? In a recent paper, Ford et al. (2000) argue that Lighthill emission—the spontaneous emission of freely propagating acoustic waves by unsteady vortical flows—is applicable to the problem of balance, with the Mach number Ma replaced by the Froude number F, and that it is a fundamental mechanism for this fuzziness. They consider the rotating shallow-water equations and find emission of inertia–gravity waves at O(F2). This is rather surprising at first sight, because several studies of balanced dynamics with the rotating shallow-water equations have gone beyond second order in F, and found only an exponentially small unbalanced component (Warn and Ménard 1986; Lorenz and Krishnamurthy 1987; Bokhove and Shepherd 1996; Wirosoetisno and Shepherd 2000). We have no technical objection to the analysis of Ford et al. (2000), but wish to point out that it depends crucially on R 1, where R is the Rossby number. This condition requires the ratio of the characteristic length scale of the flow L to the Rossby deformation radius LR to go to zero in the limit F → 0. This is the low Froude number scaling of Charney (1963), which, while originally designed for the Tropics, has been argued to be also relevant to mesoscale dynamics (Riley et al. 1981). If L/LR is fixed, however, then F → 0 implies R → 0, which is the standard quasigeostrophic scaling of Charney (1948; see, e.g., Pedlosky 1987). In this limit there is reason to expect the fuzziness of the slow manifold to be “exponentially thin,” and balance to be much more accurate than is consistent with (algebraic) Lighthill emission.
Resumo:
We study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in α turbulence, governed by ∂θ/∂t+J(ψ,θ)=ν∇2θ+f, where θ=(−Δ)α/2ψ is generalized vorticity, and ψ^(k)=k−αθ^(k) in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow (α=1), regular two-dimensional flow (α=2) and rotating shallow flow (α=3), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general α, and point out their limitations. Using an α-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as α increases. More importantly, the energy cascade is downscale in the self-similar inertial range for 2.5<α<10. At α=2.5 and α=10, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for α<4. However, downscale energy flux in the EDQNM self-similar inertial range for α>2.5 leads us to predict that any inverse cascade for α≥2.5 will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for α≥2.5 is significantly steeper than the KLB prediction, while for α<2.5 we obtain the KLB spectrum.
Resumo:
Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (Re), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multi␣lter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and Re are 115.8 ± 90.8 g/m2, 28.5 ± 19.2, and 6.9 ± 4.2 microns. Over 90% of LWP values are less than 250 g/m2. Most of the COD values (>90%) fall between 5 and 60, and ~80% of Re values are less than 10 microns. Maximum (minimum) values of LWP and Re occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have signi␣cant differences in LWP, COD, and Re. Rainfall frequency is best correlated with LWP, followed by COD and Re. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and Re were -33.6 g/m2 (-26.4%), -5.8 (-31.4%), and 2.9 ␣m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m2 (-22.3%), -3.0 (-10.0%), and -1.3 ␣m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region.
Resumo:
We examine the flaring behaviour of the cataclysmic variable AE Aqr in the context of the `magnetic propeller' model for this system. The flares are thought to arise from collisions between high-density regions in the material expelled from the system after interaction with the rapidly rotating magnetosphere of the white dwarf. We calculate the first quantitative models for the flaring and calculate the time-dependent emergent optical spectra from the resulting hot, expanding ball of gas. We compare the results under different assumptions to observations and derive values for the mass, length-scale and temperature of the material involved in the flare. We see that the fits suggest that the secondary star in this system has Population II composition.
Resumo:
Using high-time-resolution (72 ms) spectroscopy of AE Aqr obtained with LRIS on Keck II we have determined the spectrum and spectral evolution of a small flare. Continuum and integrated line fluxes in the flare spectrum are measured, and the evolution of the flare is parametrized for future comparison with detailed models of the flares. We find that the velocities of the flaring components are consistent with those previously reported for AE Aqr by Welsh, Horne & Gomer and Horne. The characteristics of the 33-s oscillations are investigated: we derive the oscillation amplitude spectrum, and from that determine the spectrum of the heated regions on the rotating white dwarf. Blackbody fits to the major and minor pulse spectra and an analysis of the emission-line oscillation properties highlight the shortfalls in the simple hotspot model for the oscillations.
Resumo:
We present N-body simulations of accretion discs about young stellar objects (YSOs). The simulation includes the presence of a magnetic loop structure on the central star which interacts with the particles by means of a magnetic drag force. We find that an equilibrium spin rate is achieved when the corotation radius coincides with the edge of the loop. This spin rate is consistent with observed values for TTauri stars, being an order of magnitude less than the breakup value. The material ejected from the system by the rotating loop has properties consistent with the observed molecular outflows, given the presence of a suitable containing cavity.
Resumo:
We review our understanding of the prototype ``Propeller'' system AE Aqr and we examine its flaring behaviour in detail. The flares are thought to arise from collisions between high density regions in the material expelled from the system after interaction with the rapidly rotating magnetosphere of the white dwarf. We show calculations of the time-dependent emergent optical spectra from the resulting hot, expanding ball of gas and derive values for the mass, lengthscale and temperature of the material involved. We see that the fits suggest that the secondary star in this system has reduced metal abundances and that, counter-intuitively, the evolution of the fireballs is best modelled as isothermal.
Resumo:
The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (~1%) but rapid decrease in galactic cosmic ray flux, a moderate (~6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.
Resumo:
The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations) to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Resumo:
In this paper the origin and evolution of the Sun’s open magnetic flux are considered for single magnetic bipoles as they are transported across the Sun. The effects of magnetic flux transport on the radial field at the surface of the Sun are modeled numerically by developing earlier work by Wang, Sheeley, and Lean (2000). The paper considers how the initial tilt of the bipole axis (α) and its latitude of emergence affect the variation and magnitude of the surface and open magnetic flux. The amount of open magnetic flux is estimated by constructing potential coronal fields. It is found that the open flux may evolve independently from the surface field for certain ranges of the tilt angle. For a given tilt angle, the lower the latitude of emergence, the higher the magnitude of the surface and open flux at the end of the simulation. In addition, three types of behavior are found for the open flux depending on the initial tilt angle of the bipole axis. When the tilt is such that α ≥ 2◦ the open flux is independent of the surface flux and initially increases before decaying away. In contrast, for tilt angles in the range −16◦ < α < 2◦ the open flux follows the surface flux and continually decays. Finally, for α ≤ −16◦ the open flux first decays and then increases in magnitude towards a second maximum before decaying away. This behavior of the open flux can be explained in terms of two competing effects produced by differential rotation. Firstly, differential rotation may increase or decrease the open flux by rotating the centers of each polarity of the bipole at different rates when the axis has tilt. Secondly, it decreases the open flux by increasing the length of the polarity inversion line where flux cancellation occurs. The results suggest that, in order to reproduce a realistic model of the Sun’s open magnetic flux over a solar cycle, it is important to have accurate input data on the latitude of emergence of bipoles along with the variation of their tilt angles as the cycle progresses.
Resumo:
The extent of the surface area sunlit is critical for radiative energy exchanges and therefore for a wide range of applications that require urban land surface models (ULSM), ranging from human comfort to weather forecasting. Here a computational demanding shadow casting algorithm is used to assess the capability of a simple single-layer urban canopy model, which assumes an infinitely long rotating canyon (ILC), to reproduce sunlit areas on roof and roads over central London. Results indicate that the sunlit roads areas are well-represented but somewhat smaller using an ILC, while sunlit roofs areas are consistently larger, especially for dense urban areas. The largest deviations from real world sunlit areas are found for roofs during mornings and evenings. Indications that sunlit fractions on walls are overestimated using an ILC during mornings and evenings are found. The implications of these errors are dependent on the application targeted. For example, (independent of albedo) ULSMs used in numerical weather prediction applying ILC representation of the urban form will overestimate outgoing shortwave radiation from roofs due to the overestimation of sunlit fraction of the roofs. Complications of deriving height to width ratios from real world data are also discussed.
Resumo:
A 24 h period of observations by the EISCAT radar and other ground-based instrumentation is used to study the role of plasma convection in determining the morphology of the high-latitude F-region during winter. It is suggested that, in the afternoon sector of the polar convection pattern, rapid zonal (westward) flows caused low F-region electron densities due to an extension of the mid-latitude trough far into the sunlit hemisphere. Low densities on the dawn side prior to 0600 UT may also have been due to a trough-like feature. Although the generation mechanism is unclear, the trough may be the fossil remnant of a substorm. Around midnight, high F-region densities were seen, probably due to plasma flow emerging from the cap through soft particle precipitation in the auroral oval. Two substorms occurred at times when the radar was south of the auroral oval. Both caused enhanced convection speeds, a swing to equatorward flow, enhanced E-region densities and a depleted F-region. The first was seen as a Westward Travelling Surge, and the swing to purely southward flow which followed the surge front did not return to westward flows until 80–110 min later. The Harang discontinuity was observed co-rotating eastwards between the substorms, 65 ± 30 min before the separatrix between the dawn and dusk convection cells.
Resumo:
We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (LR), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal.
Resumo:
A macroscopically oriented inverse hexagonal phase (HII) of the lipid phytantriol in water is converted to an oriented inverse double diamond bicontinuous cubic phase (QIID). The initial HII phase is uniaxially oriented about the long axis of a capillary with the cylinders parallel to the capillary axis. The HII phase is converted by cooling to a QII D phase which is also highly oriented, where the cylindrical axis of the former phase has been converted to a ⟨110⟩ axis in the latter, as demonstrated by small-angle X-ray scattering. This epitaxial relationship allows us to discriminate between two competing proposed geometric pathways to convert HII to QIID. Our findings also suggest a new route to highly oriented cubic phase coatings, with applications as nanomaterial templates.