917 resultados para Root of Kusnezoffii Monkshood


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The analysis of molecular regulators involved in controlling the maintenance and function of plant meristems has been the subject of many studies. Some master regulators of these processes have been identified in Arabidopsis benefiting from the array of tools available for genetic and molecular analysis in this model plant. However, aspects such as secondary growth that are more extensively observed in woody plants, have been less studied. Secondary growth is responsible for the enlargement of the plant stems and roots and results from the activity of the lateral (secondary) meristems, vascular cambium and cork cambium (phellogen), which produce two important renewable natural resources, wood and cork, respectively.(...)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple method was developed for treating corn seeds with oxamyl. It involved soaking the seeds to ensure oxamyl uptake, centrifugation to draw off excess solution, and drying under a stream of air to prevent the formation of fungus. The seeds were found to have an even distribution of oxamyl. Seeds remained fungus-free even 12 months after treatment. The highest nonphytotoxic treatment level was obtained by using a 4.00 mg/mL oxamyl solution. Extraction methods for the determination of oxamyl (methyl-N'N'-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate), its oxime (methyl-N',N'-dimethyl-N-hydroxy-1-thiooxamimidate), and DMCF (N,N-dimethyl-1-cyanoformanade) in seed" root, and soil were developed. Seeds were processed by homogenizing, then shaking in methanol. Significantly more oxamyl was extracted from hydrated seeds as opposed to dry seeds. Soils were extracted by tumbling in methanol; recoveries range~ from 86 - 87% for oxamyl. Root was extracted to 93% efficiency for oxamyl by homogenizing the tissue in methanol. NucharAttaclay column cleanup afforded suitable extracts for analysis by RP-HPLC on a C18 column and UV detection at 254 nm. In the degradation study, oxamyl was found to dissipate from the seed down into the soil. It was also detected in the root. Oxime was detected in both the seed and soil, but not in the root. DMCF was detected in small amounts only in the seed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The soil-inhabiting insect-pathogenic fungus Metarhizium robertsii also colonizes plant roots endophytically, thus showing potential as a plant symbiont. M robertsii is not randomly distributed in soils but preferentially associates with the plant rhizosphere when applied in agricultural settings. Root surface and endophytic colonization of switchgrass (Panicum virgatum) and haricot beans (Phaseolus vulgaris) by M robertsii were examined after inoculation with fungal conidia. Light and confocal microscopies were used to ascertain this rhizosphere association. Root lengths, root hair density and emergence of lateral roots were also measured. Initially, M robertsii conidia adhered to, germinated on, and colonized, roots. Furthermore, plant roots treated with Metarhizium grew faster and the density of plant root hairs increased when compared with control plants. The onset of plant root hair proliferation was initiated before germination of M robertsii on the root (within 1-2 days). Plants inoculated with M robertsii AMAD2 (plant adhesin gene) took significantly longer to show root hair proliferation than the wild type. Cell free extracts of M robertsii did not stimulate root hair proliferation. Longer term (60 days) associations showed that M robertsii endophytically colonized individual cortical cells within bean roots. Metarhizium appeared as an amorphous mycelial aggregate within root cortical cells as well as between the intercellular spaces with no apparent damage to the plant. These results suggested that not only is M robertsii rhizosphere competent but displays a beneficial endophytic association with plant roots that results in the proliferation of root hairs. The biocontrol of bean (Phaseolis vulgaris) root rot fungus Fusarium solani f. sp. phaseolis by Metarhizium robertsii was investigated in vitro and in vivo. Dual cultures on Petri dishes showed antagonism of M robertsii against F. solani. A relative inhibition of ca. 60% of F. solani growth was observed in these assays. Cell free culture filtrates of M robertsii inhibited the germination of F. solani conidia by 83% and the inhibitory metabolite was heat stable. Beans plants colonized by M robertsii then exposed to F. solani showed healthier plant profiles and lower disease indices compared to plants not colonized by M robertsii. These results suggested that the insect pathogenic/endophytic fungus M robertsii could also be utilized as a biocontrol agent against certain plant pathogens occurring in the rhizosphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most panel unit root tests are designed to test the joint null hypothesis of a unit root for each individual series in a panel. After a rejection, it will often be of interest to identify which series can be deemed to be stationary and which series can be deemed nonstationary. Researchers will sometimes carry out this classification on the basis of n individual (univariate) unit root tests based on some ad hoc significance level. In this paper, we demonstrate how to use the false discovery rate (FDR) in evaluating I(1)=I(0) classifications based on individual unit root tests when the size of the cross section (n) and time series (T) dimensions are large. We report results from a simulation experiment and illustrate the methods on two data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit war, die Einflüsse von Wurzeln und Rhizodeposition auf den Umsatz von Körnerleguminosenresiduen und damit verknüpfte mikrobielle Prozesse zu untersuchen. In einem integrierten Versuch wurden Ackerbohne (Vicia faba L.), Erbse (Pisum sativum L.) und Weiße Lupine (Lupinus albus L.) untersucht. Der Versuch bestand aus drei Teilen, zwei Gefäß-Experimenten und einem Inkubationsexperiment, in denen ausgehend von einem Gefäß-Experiment derselbe Boden und dasselbe Pflanzenmaterial verwendet wurden. In Experiment I wurde die Stickstoff-Rhizodeposition der Körnerleguminosenarten, definiert als wurzelbürtiger N nach dem Entfernen aller sichtbaren Wurzeln im Boden, gemessen und der Verbleib des Rhizodepositions-N in verschiednenen Bodenpools untersucht. Dazu wurden die Leguminosen in einem Gefäßversuch unter Verwendung einer in situ 15N-Docht-Methode mit einer 15N Harnstofflösung pulsmarkiert. In Experiment II wurde der Umsatz der N-Rhizodeposition der Körnerleguminosen und der Einfluss der Rhizodeposition auf den anschließenden C- und N-Umsatz der Körnerleguminosenresiduen in einem Inkubationsexperiment untersucht. In Experiment III wurde der N-Transfer aus den Körnerleguminosenresiduen einschließlich N-Rhizodeposition in die mikrobielle Biomasse und die Folgefrüchte Weizen (Triticum aestivum L.) und Raps (Brassica napus L.) in einem Gewächshaus-Gefäßversuch ermittelt. Die in situ 15N Docht-Markierungs-Methode wies hohe 15N Wiederfindungsraten von ungefähr 84 Prozent für alle drei Leguminosenarten auf und zeigte eine vergleichsweise homogene 15N Verteilung zwischen verschiedenen Pflanzenteilen zur Reife. Die Wurzeln zeigten deutliche Effekte auf die N-Dynamik nach dem Anbau von Körnerleguminosen. Die Effekte konnten auf die N-Rhizodeposition und deren anschließenden Umsatz, Einflüsse der Rhizodeposition von Körnerleguminosen auf den anschließenden Umsatz ihrer Residuen (Stängel, Blätter, erfassbare Wurzeln) und die Wirkungen nachfolgender Nichtleguminosen auf den Umsatzprozess der Residuen zurückgeführt werden: Die N-Rhizodeposition betrug zur Reife der Pflanzen bezogen auf die Gesamt-N- Aufnahme 13 Prozent bei Ackerbohne und Erbse und 16 Prozent bei Weißer Lupine. Bezogen auf den Residual N nach Ernte der Körner erhöhte sich der relative Anteil auf 35 - 44 Prozent. Die N-Rhizodeposition ist daher ein wesentlicher Pool für die N-Bilanz von Körnerleguminosen und trägt wesentlich zur Erklärung positiver Fruchtfolgeeffekte nach Körnerleguminosen bei. 7 - 21 Prozent des Rhizodepositions-N wurden als Feinwurzeln nach Nasssiebung (200 µm) wiedergefunden. Nur 14 - 18 Prozent des Rhizodepositions-N wurde in der mikrobiellen Biomasse und ein sehr kleiner Anteil von 3 - 7 Prozent in der mineralischen N Fraktion gefunden. 48 bis 72 Prozent der N-Rhizodeposition konnte in keinem der untersuchten Pools nachgewiesen werden. Dieser Teil dürfte als mikrobielle Residualmasse immobilisiert worden sein. Nach 168 Tagen Inkubation wurden 21 bis 27 Prozent des Rhizodepositions-N in den mineralisiert. Der mineralisierte N stammte im wesentlichen aus zwei Pools: Zwischen 30 Prozent und 55 Prozent wurde aus der mikrobiellen Residualmasse mineralisiert und eine kleinere Menge stammte aus der mikrobielle Biomasse. Der Einfluss der Rhizodeposition auf den Umsatz der Residuen war indifferent. Durch Rhizodeposition wurde die C Mineralisierung der Leguminosenresiduen nur in der Lupinenvariante erhöht, wobei der mikrobielle N und die Bildung von mikrobieller Residualmasse aus den Leguminosenresiduen in allen Varianten durch Rhizodepositionseinflüsse erhöht waren. Das Potential des residualen Körnerleguminosen-N für die N Ernährung von Folgefrüchten war gering. Nur 8 - 12 Prozent des residualen N wurden in den Folgenfrüchten Weizen und Raps wiedergefunden. Durch die Berücksichtigung des Rhizodepositions-N war der relative Anteil des Residual-N bezogen auf die Gesamt-N-Aufnahme der Folgefrucht hoch und betrug zwischen 18 und 46 Prozent. Dies lässt auf einen höheren N-Beitrag der Körnerleguminosen schließen als bisher angenommen wurde. Die residuale N-Aufnahme von Weizen von der Blüte bis zur Reife wurde durch den Residual-N gespeist, der zur Blüte in der mikrobiellen Biomasse immobilisiert worden war. Die gesamte Poolgröße, Residual-N in der mikrobiellen Biomasse und in Weizen, veränderte sich von der Blüte bis zur Reife nicht. Jedoch konnte ein Rest von 80 Prozent des Residual-N in keinem der untersuchten Pools nachgewiesen werden und dürfte als mikrobielle Residualmasse immobilisiert worden sein oder ist noch nicht abgebaut worden. Die zwei unterschiedlichen Folgefrüchte - Weizen und Raps - zeigten sehr ähnliche Muster bei der N-Aufnahme, der Residual-N Wiederfindung und bei mikrobiellen Parametern für die Residuen der drei Körnerleguminosenarten. Ein differenzierender Effekt auf den Umsatz der Residuen bzw. auf das Residual-N-Aneignungsvermögen der Folgefrüchte konnte nicht beobachtet werden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research work aimed at investigating the physiological mechanisms of tolerance of pearl millet to low soil Phosphorus availability and drought under the Sahelian conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nematicidal activity of mustard plant against hatching, migration and mortality of the root-knot nematode Meloidogyne javanica was investigated. In vitro test confirmed that mixing the sandy clay soil mixture with mustard as 4% as a biofumigant significantly reduce the percentage of egg hatching at all different incubation periods 24, 48, 72, 96 and 168 h, compared to control treatment (un-amended mixture soil and eggs in free water). Results indicate that the percentage of egg hatching reduction was 88.5, 90, 81.4, 74 and 69.4%, respectively. Mustard mixed with soil as a biofumigant led to high percentage of larval mortality at the different intervals periods in vitro. The percentage of larval mortality was 94, 100, 90.5, 90.5, and 79.4%, respectively compared to control. Laboratory results confirmed that the highest reduction in egg hatching and larval mortality was obtained after incubation period for 48 h. In vivo experiment reveals that the incorporation of the soil pots with mustard at all different doses used 3, 5% (48 h before nematode inoculation, or soil infestation with nematode), and 5% (one week before nematode inoculation or 7% of soil weight) significantly reduces all the nematode parameters compared to plant treated nematode alone. All nematode parameters i.e. the number of galls per root system, gall index, number of egg masses per root system, as well as number of juveniles per 250g soil showed high reduction with mixing the soil pots with mustard at 5% (one week before nematode inoculation), followed by the same treatment for 48h before nematode inoculation. Mustard application, one week before nematode inoculation, reduced the nematode parameters by 97, 64, 97, and 93%, respectively, compared to control. The percent of chemical components i.e. total sugars, total amino acids and total phenols were markedly enhanced compared to positive and negative control. The highest percentage was obtained with mustard at 5% one week before nematode inoculation by 68.7, 57.3 and 45%, respectively. Finally, we have to conclude that this modified technology is an innovative and can be used efficiently to control Root-knot nematode under organic agriculture and Global GAP agricultural systems instead of these carcinogenic nematicides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

White clover (Trifolium repens) is an important pasture legume but is often difficult to sustain in a mixed sward because, among other things, of the damage to roots caused by the soil-dwelling larval stages of S. lepidus. Locating the root nodules on the white clover roots is crucial for the survival of the newly hatched larvae. This paper presents a numerical model to simulate the movement of newly hatched S. lepidus larvae towards the root nodules, guided by a chemical signal released by the nodules. The model is based on the diffusion-chemotaxis equation. Experimental observations showed that the average speed of the larvae remained approximately constant, so the diffusion-chernotaxis model was modified so that the larvae respond only to the gradient direction of the chemical signal but not its magnitude. An individual-based lattice Boltzmann method was used to simulate the movement of individual larvae, and the parameters required for the model were estimated from the measurement of larval movement towards nodules in soil scanned using X-ray microtomography. The model was used to investigate the effects of nodule density, the rate of release of chemical signal, the sensitivity of the larvae to the signal, and the random foraging of the larvae on the movement and subsequent survival of the larvae. The simulations showed that the most significant factors for larval survival were nodule density and the sensitivity of the larvae to the signal. The dependence of larval survival rate on nodule density was well fitted by the Michealis-Menten kinetics. (c) 2005 Elsevier B.V All rights reserved.