940 resultados para Robot Operation System (ROS)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tesi è stata incentrata sul gioco «Indovina chi?» per l’identificazione da parte del robot Nao di un personaggio tramite la sua descrizione. In particolare la descrizione avviene tramite domande e risposte L’obiettivo della tesi è la progettazione di un sistema in grado di capire ed elaborare dei dati comunicati usando un sottoinsieme del linguaggio naturale, estrapolarne le informazioni chiave e ottenere un riscontro con informazioni date in precedenza. Si è quindi programmato il robot Nao in modo che sia in grado di giocare una partita di «Indovina chi?» contro un umano comunicando tramite il linguaggio naturale. Sono state implementate regole di estrazione e categorizzazione per la comprensione del testo utilizzando Cogito, una tecnologia brevettata dall'azienda Expert System. In questo modo il robot è in grado di capire le risposte e rispondere alle domande formulate dall'umano mediante il linguaggio naturale. Per il riconoscimento vocale è stata utilizzata l'API di Google e PyAudio per l'utilizzo del microfono. Il programma è stato implementato in Python e i dati dei personaggi sono memorizzati in un database che viene interrogato e modificato dal robot. L'algoritmo del gioco si basa su calcoli probabilistici di vittoria del robot e sulla scelta delle domande da proporre in base alle risposte precedentemente ricevute dall'umano. Le regole semantiche realizzate danno la possibilità al giocatore di formulare frasi utilizzando il linguaggio naturale, inoltre il robot è in grado di distinguere le informazioni che riguardano il personaggio da indovinare senza farsi ingannare. La percentuale di vittoria del robot ottenuta giocando 20 partite è stata del 50%. Il data base è stato sviluppato in modo da poter realizzare un identikit completo di una persona, oltre a quello dei personaggi del gioco. È quindi possibile ampliare il progetto per altri scopi, oltre a quello del gioco, nel campo dell'identificazione.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate motivating game-like scenarios. Several studies have shown a positive effect of game-playing on therapy outcome by increasing motivation. In addition, we assume that practicing highly functional movements can further enhance therapy outcome by facilitating the transfer of motor abilities acquired in therapy to daily life. Therefore, we present a rehabilitation system that enables the training of activities of daily living (ADL) with the support of an assistive robot. Important ADL tasks have been identified and implemented in a virtual environment. A patient-cooperative control strategy with adaptable freedom in timing and space was developed to assist the patient during the task. The technical feasibility and usability of the system was evaluated with seven healthy subjects and three chronic stroke patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conclusion: A robot built specifically for stereotactic cochlear implantation provides equal or better accuracy levels together with a better integration into a clinical environment, when compared to existing approaches based on industrial robots. Objectives: To evaluate the technical accuracy of a robotic system developed specifically for lateral skull base surgery in an experimental setup reflecting the intended clinical application. The invasiveness of cochlear electrode implantation procedures may be reduced by replacing the traditional mastoidectomy with a small tunnel slightly larger in diameter than the electrode itself. Methods: The end-to-end accuracy of the robot system and associated image-guided procedure was evaluated on 15 temporal bones of whole head cadaver specimens. The main components of the procedure were as follows: reference screw placement, cone beam CT scan, computer-aided planning, pair-point matching of the surgical plan, robotic drilling of the direct access tunnel, and post-operative cone beam CT scan and accuracy assessment. Results: The mean accuracy at the target point (round window) was 0.56 ± 41 mm with an angular misalignment of 0.88 ± 0.41°. The procedural time of the registration process through the completion of the drilling procedure was 25 ± 11 min. The robot was fully operational in a clinical environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bucknell Humanoid Robot Arm project was developed in order toprovide a lightweight robotic arm for the IHMC / Bucknell University bipedal robot that will provide a means of manipulation and facilitate operations in urban environments. The resulting fabricated arm described in this thesis weighs only 13 pounds, and is capable of holding 11 pounds fully outstretched, lifting objects such as tools, and it can open doors. It is also capable of being easily integrated with the IHMC / Bucknell University biped. This thesis provides an introduction to robots themselves, discusses the goals of the Bucknell Humanoid Robot Arm project, provides a background on some of the existing robots, and shows how the Bucknell Humanoid Robot Arm fits in with the studies that have been completed. After reading these studies, important items such as design trees and operational scenarios were completed. The completion of these items led to measurable specifications and later the design requirements and specifications. A significant contribution of this thesis to the robotics discipline involves the design of the actuator itself. The arm uses of individual, lightweight, compactly designed actuators to achieve desired capabilities and performance requirements. Many iterations were completed to get to the final design of each actuator. After completing the actuators, the design of the intermediate links and brackets was finalized. Completion of the design led to the development of a complex controls system which used a combination of Clanguage and Java.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The push for improved fuel economy and reduced emissions has led to great achievements in engine performance and control. These achievements have increased the efficiency and power density of gasoline engines dramatically in the last two decades. With the added power density, thermal management of the engine has become increasingly important. Therefore it is critical to have accurate temperature and heat transfer models as well as data to validate them. With the recent adoption of the 2025 Corporate Average Fuel Economy(CAFE) standard, there has been a push to improve the thermal efficiency of internal combustion engines even further. Lean and dilute combustion regimes along with waste heat recovery systems are being explored as options for improving efficiency. In order to understand how these technologies will impact engine performance and each other, this research sought to analyze the engine from both a 1st law energy balance perspective, as well as from a 2nd law exergy analysis. This research also provided insights into the effects of various parameters on in-cylinder temperatures and heat transfer as well as provides data for validation of other models. It was found that the engine load was the dominant factor for the energy distribution, with higher loads resulting in lower coolant heat transfer and higher brake work and exhaust energy. From an exergy perspective, the exhaust system provided the best waste heat recovery potential due to its significantly higher temperatures compared to the cooling circuit. EGR and lean combustion both resulted in lower combustion chamber and exhaust temperatures; however, in most cases the increased flow rates resulted in a net increase in the energy in the exhaust. The exhaust exergy, on the other hand, was either increased or decreased depending on the location in the exhaust system and the other operating conditions. The effects of dilution from lean operation and EGR were compared using a dilution ratio, and the results showed that lean operation resulted in a larger increase in efficiency than the same amount of dilution with EGR. Finally, a method for identifying fuel spray impingement from piston surface temperature measurements was found. Note: The material contained in this section is planned for submission as part of a journal article and/or conference paper in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the evolution of an artificial neural network (ANN) to assist in the problem of indoor robotic localization. We investigate the design and building of an autonomous localization system based on information gathered from wireless networks (WN). The article focuses on the evolved ANN, which provides the position of a robot in a space, as in a Cartesian coordinate system, corroborating with the evolutionary robotic research area and showing its practical viability. The proposed system was tested in several experiments, evaluating not only the impact of different evolutionary computation parameters but also the role of the transfer functions on the evolution of the ANN. Results show that slight variations in the parameters lead to significant differences on the evolution process and, therefore, in the accuracy of the robot position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations based on plans for a deep geothermal system in Basel, Switzerland are used here to understand chemical processes that occur in an initially dry granitoid reservoir during hydraulic stimulation and long-term water circulation to extract heat. An important question regarding the sustainability of such enhanced geothermal systems (EGS), is whether water–rock reactions will eventually lead to clogging of flow paths in the reservoir and thereby reduce or even completely block fluid throughput. A reactive transport model allows the main chemical reactions to be predicted and the resulting evolution of porosity to be tracked over the expected 30-year operational lifetime of the system. The simulations show that injection of surface water to stimulate fracture permeability in the monzogranite reservoir at 190 °C and 5000 m depth induces redox reactions between the oxidised surface water and the reduced wall rock. Although new calcite, chlorite, hematite and other minerals precipitate near the injection well, their volumes are low and more than compensated by those of the dissolving wall-rock minerals. Thus, during stimulation, reduction of injectivity by mineral precipitation is unlikely. During the simulated long-term operation of the system, the main mineral reactions are the hydration and albitization of plagioclase, the alteration of hornblende to an assemblage of smectites and chlorites and of primary K-feldspar to muscovite and microcline. Within a closed-system doublet, the composition of the circulated fluid changes only slightly during its repeated passage through the reservoir, as the wall rock essentially undergoes isochemical recrystallization. Even after 30 years of circulation, the calculations show that porosity is reduced by only ∼0.2%, well below the expected fracture porosity induced by stimulation. This result suggests that permeability reduction owing to water–rock interaction is unlikely to jeopardize the long-term operation of deep, granitoid-hosted EGS systems. A peculiarity at Basel is the presence of anhydrite as fracture coatings at ∼5000 m depth. Simulated exposure of the circulating fluid to anhydrite induces a stronger redox disequilibrium in the reservoir, driving dissolution of ferrous minerals and precipitation of ferric smectites, hematite and pyrite. However, even in this scenario the porosity reduction is at most 0.5%, a value which is unproblematic for sustainable fluid circulation through the reservoir.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This paper presents the kinematics, the control and the therapy modes of the arm therapy robot ARMin. It is a haptic display with semi-exoskeleton kinematics with four active and two passive degrees of freedom. Equipped with position, force and torque sensors the device can deliver patient-cooperative arm therapy taking into account the activity of the patient and supporting him/her only as much as needed. The haptic display is combined with an audiovisual display that is used to present the movement and the movement task to the patient. It is assumed that the patient-cooperative therapy approach combined with a multimodal display can increase the patient's motivation and activity and, therefore, the therapeutic progress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Task-oriented repetitive movements can improve motor recovery in patients with neurological or orthopaedic lesions. The application of robotics can serve to assist, enhance, evaluate, and document neurological and orthopaedic rehabilitation. ARMin is a new robot for arm therapy applicable to the training of activities of daily living in clinics. ARMin has a semiexoskeletal structure with six degrees of freedom, and is equipped with position and force sensors. The mechanical structure, the actuators and the sensors of the robot are optimized for patient-cooperative control strategies based on impedance and admittance architectures. This paper describes the mechanical structure, the control system, the sensors and actuators, safety aspects and results of a first pilot study with hemiplegic and spinal cord injured subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Liquid Argon Time Projection Chamber (LArTPC) is a prime type of detector for future large-mass neutrino observatories and proton decay searches. In this paper we present the design and operation, as well as experimental results from ARGONTUBE, a LArTPC being operated at the AEC-LHEP, University of Bern. The main goal of this detector is to prove the feasibility of charge drift over very long distances in liquid argon. Many other aspects of the LArTPC technology are also investigated, such as a voltage multiplier to generate high voltage in liquid argon (Greinacher circuit), a cryogenic purification system and the application of multi-photon ionization of liquid argon by a UV laser. For the first time, tracks induced by cosmic muons and UVlaser beam pulses have been observed and studied at drift distances of up to 5 m, the longest reached to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Elchanan Haendel Kirchhahn]. Naie bearbeiṭung und miṭ hosafos yeqoros benannṭ Meśibbat han-nefeš ... mimmenî Yehûdā kōhēn Qrôys