996 resultados para Ribosomal gene
Resumo:
The tendency to dizygotic (DZ) twinning is inherited in both humans and sheep, and a fecundity gene in sheep (FecB) maps to sheep chromosome 6, syntenic with human 4q21-25. Our aim was to see whether a gene predisposing to human DZ twinning mapped to this region. DNA was collected from 169 pairs and 17 sets of 3 sisters (trios) from Australia and New Zealand who had each had spontaneous DZ twins, mostly before the age of 35, and from a replication sample of 111 families (92 affected sister pairs) from The Netherlands. Exclusion mapping was carried out after typing 26 markers on chromosome 4, of which 8 spanned the region Likely to contain the human homologue of the sheep FecB gene. We used nonparametric affected sib pair methods for linkage analysis [ASPEX 2.2, Hinds and Risch, 1999]. Complete exclusion of linkage (lod < -2) of a gene conferring a relative risk for sibs as low as 1.5 ((s) > 1.5) was obtained for all but the p terminus region on chromosome 4. Exclusion in the syntenic region was stronger, down to lambda (s) = 1.3. We concluded that if there is a gene influencing DZ twinning on chromosome 4, its effect must be minor. (C) 2001 Wiley-Liss, Inc.
Resumo:
Risk factors for melanoma include environmental (particularly ultraviolet exposure) and genetic factors. In rare families, susceptibility to melanoma is determined by high penetrance mutations in the genes CDKN2A or CDK4, with more common, less penetrant genes also postulated. A further, potent risk factor for melanoma is the presence of large numbers of melanocytic nevi so that genes controlling nevus phenotype could be such melanoma susceptibility genes. A large Australian study involving twins aged 12 y of predominantly U.K. ancestry showed strong evidence for genetic influence on nevus number and density. We carried out essentially the same study in the U.K. to gain insight into gene-environment interactions for nevi. One hundred and three monozygous (MZ) and 118 dizygous (DZ) twin pairs aged 10-18 y were examined in Yorkshire and Surrey, U.K. Nevus counts were, on average, higher in boys (mean = 98.6) than girls (83.8) (p = 0.009) and higher in Australia (110.4) than in the U.K. (79.2, adjusted to age 12 y, p < 0.0001), and nevus densities were higher on sun-exposed sites (92 per m(2)) than sun-protected sites (58 per m(2)) (p < 0.0001). Correlations in sex and age adjusted nevus density were higher in MZ pairs (0.94, 95% CI 0.92-0.96) than in DZ pairs (0.61, 95%CI 0.49-0.72), were notably similar to those of the Australian study (MZ = 0.94, DZ = 0.60), and were consistent with high heritability (65% in the U.K., 68% in Australia). We conclude that emergence of nevi in adolescents is under strong genetic control, whereas environmental exposures affect the mean number of nevi.
Resumo:
This study determined the frequencies of a G-to-A transition (S/N167) polymorphism in exon 4 of the parkin gene in Australian Parkinson's disease patients and control subjects. The genotype of each subject was determined using the polymerase chain reaction and restriction-fragment-length-polymorphism analysis. Overall, the A allele was significantly less common in the Parkinson's disease group (1.7%) compared with the control group (3.8%, OR = 0.43, 95% CI = 0.19-1.00, P < 0.05), although the frequency in the young onset Parkinson's disease group (6.6%) was not significantly different to controls. The A allele is less common in Australian Caucasian subjects compared to Japanese Parkinson's disease patients and appears to be under-represented in older-onset Parkinson's disease. <(c)> 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in rum this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the Oligochaete. Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan. Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that: 1) the Myxozoa are closely related to Cnidaria (also supported by morphological data), 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan. rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist), and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis. Ceratomyxa shasta. Kudoa spp,, and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans. which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.
Resumo:
Trypanosome infections are often difficult to detect by conventional microscopy and their pleomorphy often confounds differential diagnosis. Molecular techniques are now being used to diagnose infections and to determine phylogenetic relationships between species. Complete small subunit rRNA gene sequences were determined for isolates of Trypanosoma chelodina from the Brisbane River tortoise (Emydura signata), the saw-shelled tortoise (Elseya latisternum), and the eastern snake-necked tortoise (Chelodina longicollis) from southeast Queensland, Australia. Partial sequence data were also obtained for T. binneyi from a platypus (Ornithorhynchus anatinus) from Tasmania. Phylogenetic relationships between T. chelodina, T. binneyi and other species were examined by maximum parsimony and likelihood methods. The Australian tortoise and platypus trypanosomes did not exhibit any close phylogenetic relationships with those of mammals, reptiles or amphibians, but were closely related to each other, and to fish trypanosomes. This contra-indicates their co-evolution with their vertebrate hosts but does not exclude co-evolution with different groups of invertebrate vectors, notably insects and leeches.
Resumo:
Rapid access to genetic information is central to the revolution presently occurring in the pharmaceutical industry, particularly In relation to novel drug target identification and drug development. Genetic variation, gene expression, gene function and gene structure are just some of the important research areas requiring efficient methods of DNA screening. Here, we highlight state-of-the-art techniques and devices for gene screening that promise cheaper and higher-throughput yields than currently achieved with DNA microarrays. We include an overview of existing and proposed bead-based strategies designed to dramatically increase the number of probes that can be interrogated in one assay. We focus, in particular, on the issue of encoding and/or decoding (bar-coding) large bead-based libraries for HTS.
Resumo:
We describe the genomic organization of a recently identified CC chemokine, MIP3 alpha /CCL20 (HGMW-approved symbol SCYA20). The MIP-3 alpha /CCL20 gene was cloned and sequenced, revealing a four exon, three intron structure, and was localized by FISK analysis to 2q35-q36. Two distinct cDNAs were identified, encoding two forms of MIP-3 alpha /CCL20, Ala MLP-3 alpha /CCL20 and Ser MIP-3 alpha /CCL20, that differ by one amino acid at the predicted signal peptide cleavage site. Examination of the sequence around the boundary of intron 1 and exon 2 showed that use of alternative splice acceptor sites could give rise to Ata MIP-3 alpha /CCL20 or Ser MIP-3 alpha /CCL20. Both forms of MIP-3cr/CCL20 were chemically synthesized and tested for biological activity. Both flu antigen plus IL-a-activated CD4(+) and CD8(+) T lymphoblasts and cord blood-derived dendritic cells responded to Ser and Ala MIP-3 alpha /CCL20. T lymphocytes exposed only to IL-2 responded inconsistently, while no response was detected in naive T lymphocytes, monocytes, or neutrophils. The biological activity of Ser MIP-3 alpha /CCL20 and Ala MIP-3 alpha /CCL20 and the tissue-specific preference of different splice acceptor sites are not yet known. (C) 2001 Academic Press.
Resumo:
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Resumo:
Background: Cross-sectional studies have demonstrated that a specific polymorphism (allele 2 of both IL-1A +4845 and IL-1B +3954) in the IL-1 gene cluster has been associated with an increased susceptibility to severe periodontal disease and to an increased bleeding tendency during periodontal maintenance. The aim of the present study was to investigate the relationship between IL-1 genotype and periodontitis in a prospective longitudinal study in an adult population of essentially European heritage. Methods: From an ongoing study of the Oral Care Research Programme of The University of Queensland, 295 subjects consented to genotyping for IL-1 allele 2 polymorphisms. Probing depths and relative attachment levels were recorded at baseline, 6, 12, 24, 36, 48 and 60 months using the Florida probe. Periodontitis progression at a given site was defined as attachment loss greater than or equal to2 mm at any observation period during the 5 years of the study and the extent of disease progression determined by the number of sites showing attachment loss. Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Prevotella intermedia were detected using ELISA. Results: 38.9% of the subjects were positive for the composite IL-1 genotype. A relationship between the IL-1 positive genotype and increased mean probing pocket depth in non-smokers greater than 50 years of age was found. Further, IL-1 genotype positive smokers and genotype positive subjects with P. gingivalis in their plaque had an increase in the number of probing depths greater than or equal to3.5 mm, There was a consistent trend for IL-1 genotype positive subjects to experience attachment loss when compared with IL-1 genotype negative subjects. Conclusion: The results of this study have shown an interaction of the IL-1 positive genotype with age, smoking and P. gingivalis which suggests that IL-1 genotype is a contributory but non-essential risk factor for periodontal disease progression in this population.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Izuru Matusmoto and Peter A. Wilce. The presentations were (1) GABA receptor subunit expression in the human alcoholic brain, by Tracey Buckley and Peter Dodd; (2) NMDAR gene expression during ethanol addiction, by Jorg Puzke, Rainer Spanagel, Walther Zieglgansberger, and Gerald Wolf; (3) Differentially expressed gene in the nucleus accumbens from ethanol-administered rat, by Shuangying Leng; (4) Expression of a novel gene in the alcoholic brain, by Peter A. Wilce; and (5) Investigations of haplotypes of the dopamine Da-receptor gene in alcoholics, by Hans Rommelspacher, Ulrich Finckh, and Lutz G. Schmidt.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The QU-GENE Computing Cluster (QCC) is a hardware and software solution to the automation and speedup of large QU-GENE (QUantitative GENEtics) simulation experiments that are designed to examine the properties of genetic models, particularly those that involve factorial combinations of treatment levels. QCC automates the management of the distribution of components of the simulation experiments among the networked single-processor computers to achieve the speedup.