944 resultados para Retinal Axon Guidance


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoubtedly the most important result of the investigations in physiology and biophysics was the discovery of the electrochemical mechanism of propagation of the action potential in nerves that was made by Hodgkin and Huxley during the first half of the past century. Since some decades ago diverse experiments about the electro optical properties of the axon membrane there was published using the most diverse optical experimental ‘procedures POT 6-10’. In this paper some results of a dynamical speckle technique applied for obtaining microscopic images of a section of a squid giant axon membrane during the activation by electrical impulses and his digital process are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This article presents a practical case of a pervasive multimedia guidance system for public transport passengers. In order to provide useful information to passengers, the system is capable of operating and adapting spontaneously to the different parts of a public transport network, using local data communication technologies. The multimedia data provided by the system are highly accessible, and adapt to the passengers' preferences, and are consequently suitable for special needs passengers. To this end, a paradigm of pervasive computing has been applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pursuer UAV tracking and loitering around a target is the problem analyzed in this thesis. The UAV is assumed to be a fixed-wing vehicle and constant airspeed together with bounded lateral accelerations are the main constraints of the problem. Three different guidance laws are designed for ensuring a continuos overfly on the target. Different proofs are presented to demonstrate the stability properties of the laws. All the algorithms are tested on a 6DoF Pioneer software simulator. Classic control design methods have been adopted to develop autopilots for implementig the simulation platform used for testing the guidance laws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal circuits in the retina analyze images according to qualitative aspects such as color or motion, before the information is transmitted to higher visual areas of the brain. One example, studied for over the last four decades, is the detection of motion direction in ‘direction selective’ neurons. Recently, the starburst amacrine cell, one type of retinal interneuron, has emerged as an essential player in the computation of direction selectivity. In this study the mechanisms underlying the computation of direction selective calcium signals in starburst cell dendrites were investigated using whole-cell electrical recordings and two-photon calcium imaging. Analysis of the somatic electrical responses to visual stimulation and pharmacological agents indicated that the directional signal (i) is not computed presynaptically to starburst cells or by inhibitory network interactions. It is thus computed via a cell-intrinsic mechanism, which (ii) depends upon the differential, i.e. direction selective, activation of voltage-gated channels. Optically measuring dendritic calcium signals as a function of somatic voltage suggests (iii) a difference in resting membrane potential between the starburst cell’s soma and its distal dendrites. In conclusion, it is proposed that the mechanism underlying direction selectivity in starburst cell dendrites relies on intrinsic properties of the cell, particularly on the interaction of spatio-temporally structured synaptic inputs with voltage-gated channels, and their differential activation due to a somato-dendritic difference in membrane potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During central nervous system myelination, oligodendrocytes extend membrane processes towards an axonal contact site which is followed by ensheathment resulting in a compacted multilamellar myelin sheath. The formation of this axon-glial unit facilitates rapid saltatory propagation of action potentials along the axon and requires the synthesis and transport of copious amounts of lipids and proteins to the axon-glial contact site. Fyn is a member of the Src family of non receptor tyrosine kinases and inserted into the inner leaflet of the oligodendrocyte membrane by acylation. Fyn activity plays a pivotal role in the maturation of oligodendrocytes and the myelination process. It was suggested previously that Fyn kinase can be stimulated by binding of a neuronal ligand to oligodendroglial F3/ contactin, a glycosyl-phosphatidyl-inositol anchored immunoglobulin superfamily (IgSF) member protein. It could be shown here, that neuronal cell adhesion molecule L1 binds to oligodendrocytes in an F3-dependent manner and activates glial Fyn. In the search for downstream participants of this novel axon-glial signalling cascade, heterogeneous nuclear ribonucleoprotein (hnRNP) A2 was identified as a novel Fyn target in oligodendrocytes. HnRNP A2 was known to be involved in the localisation of translationally repressed myelin basic protein (MBP) mRNA by binding to a cis acting A2 response element (A2RE) present in the 3’ untranslated region. Transport of MBP mRNAs occurs in RNA-protein complexes termed RNA granules and translational repression during transport is achieved by hnRNP A2-mediated recruitment of hnRNP E1 to the granules. It could be shown here, that Fyn activity leads to enhanced translation of reporter mRNA containing a part of the 3’ UTR of MBP including the A2RE. Furthermore hnRNP E1 seems to dissociate from RNA granules in response to Fyn activity and L1 binding. These findings suggest a novel form of neuron- glial communication: Axonal L1 binding to oligodendroglial F3 activates Fyn kinase. Activated Fyn phosphorylates hnRNP A2 leading to removal of hnRNP E1 from RNA granules initiating the translation of MBP mRNA. MBP is the second most abundant myelin protein and mice lacking this protein show a severe hypomyelination phenotype. Moreover, the brains of Fyn knock out mice contain reduced MBP levels and are hypomyelinated. Hence, L1-mediated MBP synthesis via Fyn as a central molecule could be part of a regulatory mechanism required for myelinogenesis in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this PhD thesis 3 projects were addressed focusing on the melanopsin retinal ganglion cells (mRGCs) system and its relevance for circadian rhythms and sleep in neurodegeneration. The first project was aimed at completing the characterization of mRGCs system in hereditary optic neuropathies (LHON and DOA). We confirmed that mRGCs are relatively spared also in post-mortem retinal specimens of a DOA case and pupillometric evaluation of LHON patients showed preservation of the pupillary light reflex, with attenuated responses compared to controls. Cell studies failed to indicate a protective role exerted by melanopsin itself. The second project was aimed at characterizing the possible occurrence of optic neuropathy and rest-activity circadian rhythm dysfunction in Alzheimer (AD) and Parkinson disease (PD), as well as, at histological level, the possible involvement of mRGCs in AD. OCT studies demonstrated a subclinical optic neuropathy in both AD and PD patients, with a different pattern involving the superior and nasal quadrants in AD and the temporal quadrant in PD. Actigraphic studies demonstrated a tendency towards an increased intradaily variability (IV) and reduced relative amplitude (RA) of rest-activity circadian rhythm in AD and a significant increased IV a reduced RA in PD. Immunohistochemical analysis of post-mortem retinal specimens and optic nerve cross-sections of neuropathologically confirmed AD cases demonstrated a significant loss of mRGCs and a nearly significant loss of axons in AD compared to controls. The mRGCs were affected in AD independently from age and magnitude of axonal loss. Overall these results suggest a role of the mRGCs system in the pathogenesis of circadian dysfunction in AD. The third project was aimed at evaluating the possible association between a single nucleotide polymorphism of the OPN4 gene and chronotype or SAD, failing to find any significant association with chronotype, but showing a non-significant increment of TT genotype in SAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde die Funktion von Dystroglycan in jungen und späten Stadien des sich entwickelnden ZNS untersucht. Hierzu wurden Antikörper generiert, die fähig waren, in vivo die Interaktion zwischen a-und b-Dystroglycan zu stören. Die Antikörper oder Fab-Fragmente wurden in das Mesencephalon oder Auge lebender Hühnerembryonen injiziert, um aus den beobachteten Veränderungen die Funktion des DAG zu untersuchen. Die Fab-Fragmentinjektionen führten zu Hyperproliferation, verbunden mit morphologischen Veränderungen der Neuroepithelzellen und Zunahme der Anzahl postmitotischer Neuronen. Ebenso wurde die basale und apikale Polarität von Neuroepithelzellen beeinflusst. Auch die Axonorientierung der tectobulbären Axone wurde durch die Injektionen gestört. In älteren embryonalen Stadien kam es, durch Fab-Fragmentinjektionen in die Augen von Embryonen, zu strukturellen Veränderungen der Retina, verbunden mit einer breiteren Verteilung des DAG, wie auch der Synapsen innerhalb der OPL. Die retinalen Zelltypen, wie Müller-Gliazellen und Stäbchen-Bipolarzellen, waren abgerundet und hatten ihre typische Zellform verloren. Die Ergebnisse dieser Arbeit zeigen, dass Dystroglycan einen entscheidenden Einfluss auf die Proliferation, Migration, Polarität und Differenzierung der Neuroepithelzellen ausübt. Außerdem zeigen diese Daten, dass Dystroglycan nicht nur in der frühen embryonalen ZNS-Entwicklung eine maßgebliche Rolle spielt, sondern auch in späten Stadien. Die Ähnlichkeit der beobachteten Veränderungen nach Fab-Fragmentinjektionen legt nahe, dass einige Veränderungen im ZNS bestimmter Muskeldystrophieformen, durch Beeinflussung der Neuroepithelzellen im sich entwickelnden ZNS, verursacht werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous data suggested that angiopoietin-2 (Ang-2) is linked to pericyte loss, thereby playing an important role in diabetic retinopathy. In this study, we investigated the effect of retinal overexpression of human Ang-2 (mOpsinhAng2 mouse) on vascular morphology in non-diabetic and streptozotozin-induced diabetic animals. Pericyte (PC) coverage and acellular capillary (AC) formation were quantitated in retinal digest preparations after 3 and 6 months of diabetes duration. The degree of retinopathy in non-diabetic mOpsinhAng2 mice at 3 months (-21% PC, +49% AC) was comparable to age-matched diabetic wild type mice. Diabetic mOpsinhAng2 mice exhibited significantly worse vascular pathology than wild type counterparts at 6 months. Quantitative PCR revealed that human Ang-2 mRNA was highly overexpressed in retinas of transgenic mice. Our data demonstrate that overexpression of Ang-2 in the retina enhances vascular pathology, indicating that Ang-2 plays an essential role in diabetic vasoregression via destabilization of pericytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate placement of lesions is crucial for the effectiveness and safety of a retinal laser photocoagulation treatment. Computer assistance provides the capability for improvements to treatment accuracy and execution time. The idea is to use video frames acquired from a scanning digital ophthalmoscope (SDO) to compensate for retinal motion during laser treatment. This paper presents a method for the multimodal registration of the initial frame from an SDO retinal video sequence to a retinal composite image, which may contain a treatment plan. The retinal registration procedure comprises the following steps: 1) detection of vessel centerline points and identification of the optic disc; 2) prealignment of the video frame and the composite image based on optic disc parameters; and 3) iterative matching of the detected vessel centerline points in expanding matching regions. This registration algorithm was designed for the initialization of a real-time registration procedure that registers the subsequent video frames to the composite image. The algorithm demonstrated its capability to register various pairs of SDO video frames and composite images acquired from patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional time-domain optical coherence tomography (OCT) has become an important tool for following dry or exudative age-related macular degeneration (AMD). Fourier-domain three-dimensional (3D) OCT was recently introduced. This study tested the reproducibility of 3D-OCT retinal thickness measurements in patients with dry and exudative AMD.