947 resultados para Retaining walls


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article examines how therapists and clients manage the therapeutic relationship in online psychotherapy. Our study focuses on early sessions of therapy involving 22 therapist-client pairs participating in online Cognitive Behavioural Therapy (CBT) for depression. Using Conversation Analysis (CA), we examine how therapists can orient to clients’ contributions, while also retaining control of the therapeutic trajectory. We report two practices that therapists can use, at their discretion, following clients’ responses to requests for information. The first, thanking, accepts clients’ responses, orienting to the neutral affective valence of those responses. The second, commiseration, orients to the negative affective valence of clients’ responses. We argue that both practices are a means by which therapists can simultaneously manage developing rapport, while also retaining control of the therapeutic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim To better understand the morphology of, and the effect of different travel patterns and varying substrate environments on, the feral horse foot to better manage the feet of domestic horses. Methods The left forefeet of 20 adult feral horses from each of five geographically separated populations in Australia (n = 100) were investigated. Populations were selected on the basis of substrate hardness under foot and the amount of travel typical for the population. Feet were radiographed and photographed and 40 morphometric measurements of each foot were obtained. Results Of the 40 parameters, 37 differed significantly (P < 0.05) among the populations, which suggested that substrate hardness and travel distance have an effect on foot morphology. Harder substrates and longer travel distances were associated with short hoof walls and minimal hoof wall flaring. Softer substrates and moderate travel distances were associated with long flared walls, similar to that of typical untrimmed feet of domestic horses. Conclusions The morphology of the feral horse foot appeared to be affected by the distance travelled and by the abrasive qualities and mechanical properties of the substrate under foot. There were marked differences in some conformation parameters between the feral horses in the current study and domestic horses in previous studies. Although the conformation of the feral horse foot may have some prescriptive value, concerns regarding abnormal foot anatomy warrant further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a pedagogical approach that addresses challenges in design education for novices. These include an inability to frame new problems and limited-to-no design capability or domain knowledge. Such challenges can reduce student engagement with design practice, cause derivative design solutions as well as the inappropriate simplification of design assignments and assessment criteria by educators. We argue that a curriculum that develops the student’s design process will enable them to deal with the uncertain and dynamic situations that characterise design. We describe how this may be achieved and explain our pedagogical approach in terms of methods from Reflective Practice and theories of abstraction and creativity. We present a landscape architecture unit, recently taught, as an example. It constitutes design exercises that require little domain or design expertise to support the development of conceptual thinking and a design rationale. We show how this approach (a) leveraged the novice’s existing spatial and thinking skills while (b) retaining contextually-rich design situations. Examples of the design exercises taught are described along with samples of student work. The assessment rationale is also presented and explained. Finally, we conclude by reflecting on how this approach relates to innovation, sustainability and other disciplines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The texture of agricultural crops changes during harvesting, post harvesting and processing stages due to different loading processes. There are different source of loading that deform agricultural crop tissues and these include impact, compression, and tension. Scanning Electron Microscope (SEM) method is a common way of analysing cellular changes of materials before and after these loading operations. This paper examines the structural changes of pumpkin peel and flesh tissues under mechanical loading. Compression and indentation tests were performed on peel and flesh samples. Samples structure were then fixed and dehydrated in order to capture the cellular changes under SEM. The results were compared with the images of normal peel and flesh tissues. The findings suggest that normal flesh tissue had bigger size cells, while the cellular arrangement of peel was smaller. Structural damage was clearly observed in tissue structure after compression and indentation. However, the damages that resulted from the flat end indenter was much more severe than that from the spherical end indenter and compression test. An integrated deformed tissue layer was observed in compressed tissue, while the indentation tests shaped a deformed area under the indenter and left the rest of the tissue unharmed. There was an obvious broken layer of cells on the walls of the hole after the flat end indentations, whereas the spherical indenter created a squashed layer all around the hole. Furthermore, the influence of loading was lower on peel samples in comparison with the flesh samples. The experiments have shown that the rate of damage on tissue under constant rate of loading is highly dependent on the shape of equipment. This fact and observed structural changes after loading underline the significance of deigning post harvesting equipments to reduce the rate of damage on agricultural crop tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An upper primary multiliteracies project based on the children’s book “Pearl Barley and Charlie Parsley” by Aaron Blabey. The main theme explored is same and different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Educational reforms currently being enacted in Kuwaiti Family and Consumer Sciences (FCS) in response to contemporary demands for increased student-centred teaching and learning are challenging for FCS teachers due to their limited experience with student-centred learning tools such as Graphic Organisers (GOs). To adopt these reforms, Kuwaiti teachers require a better understanding of and competency in promoting cognitive learning processes that will maximise student-centred learning approaches. This study followed the experiences of four Grade 6 FCS Kuwaiti teachers as they undertook a Professional Development (PD) program specifically designed to advance their understanding of the use of GOs and then as they implemented what they had learned in their Grade 6 FCS classroom. The PD program developed for this study was informed by Nasseh.s competency PD model as well as Piaget and Ausubel.s cognitive theories. This model enabled an assessment and evaluation of the development of the teachers. competencies as an outcome of the PD program in terms of the adoption of GOs, in particular, and their capacity to use GOs to engage students in personalised, in-depth, learning through critical thinking and understanding. The research revealed that the PD program was influential in reforming the teachers. learning, understanding of and competency in, cognitive and visual theories of learning, so that they facilitated student-centred teaching and learning processes that enabled students to adopt and adapt GOs in constructivist learning. The implementation of five GOs - Flow Chart, Concept Maps, K-W-L Chart, Fishbone Diagram and Venn Diagram - as learning tools in classrooms was investigated to find if changes in pedagogical approach for supporting conceptual learning through cognitive information processing would reduce the cognitive work load of students and produce better learning approaches. The study as evidenced by the participant teachers. responses and classroom observations, showed a marked increase in student interest, participation, critical thought, problem solving skills, as a result of using GOs, compared to using traditional teaching and learning methods. A theoretical model was developed from the study based on the premise that teachers. knowledge of the subject, pedagogy and student learning precede the implementation of student-centred learning reform, that it plays an important role in the implementation of student-centred learning and that it brings about a change in teaching practice. The model affirmed that observed change in teaching-practice included aspects of teachers. beliefs, as well as confidence and effect on workplace and on student learning, including engagement, understanding, critical thinking and problem solving. The model assumed that change in teaching practice is inseparable from teachers. lifelong PD needs related to knowledge, understanding, skills and competency. These findings produced a set of preliminary guidelines for establishing student-centred constructivist strategies in Kuwaiti education while retaining Kuwait.s cultural uniqueness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performance under fire conditions while past research showed contradicting results about the benefits of using cavity insulation. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. In this research 11 full scale tests were conducted on conventional load bearing steel stud walls with and without cavity insulation, and the new composite panel system to study their thermal and structural performance under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided supporting research data. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of LSF walls and increased their fire resistance rating. This paper presents the details of the LSF wall tests and the thermal and structural performance data and fire resistance rating of load-bearing wall assemblies lined with varying plasterboard-insulation configurations under two different load ratios. Fire test results including the time–temperature and deflection profiles are presented along with the failure times and modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls are made of cold-formed, thin-walled steel lipped channel studs with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. A research study using both fire tests and numerical studies was undertaken to investigate the structural and thermal behaviour of load bearing LSF walls made of both conventional and the new composite panels under standard fire conditions and to determine their fire resistance rating. This paper presents the details of finite element models of LSF wall studs developed to simulate the structural performance of LSF wall panels under standard fire conditions. Finite element analyses were conducted under both steady and transient state conditions using the time-temperature profiles measured during the fire tests. The developed models were validated using the fire test results of 11 LSF wall panels with various plasterboard/insulation configurations and load ratios. They were able to predict the fire resistance rating within five minutes. The use of accurate numerical models allowed the inclusion of various complex structural and thermal effects such as local buckling, thermal bowing and neutral axis shift that occurred in thin-walled steel studs under non-uniform elevated temperature conditions. Finite element analyses also demonstrated the improvements offered by the new composite panel system over the conventional cavity insulated system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we unveil a tragic triptych of three Australian women painfully painted onto the walls of interior surfaces. The woman at the centre of the triptych is Florence Broadhurst whose tragic death still remains a mystery. To the right is Australian skin illustrator Emma Hack who recreates Broadhurst’s wallpapers, mimicking their colourful patterns onto live models. Hack perfectly assimilates the models’ body into the wallpaper, camouflaging bodies except for small hints at something more in the foreground. In the process of Hack’s images, the models become statues, standing painfully still holding their breath for minutes at a time. The third woman, to the left of the triptych, is the fictional character Candy from the 2006 Australian film Candy. Candy’s traumatic struggle with addiction ends with her conveying her pain in a poem she writes on the walls of her home; culminating her tragic story into a disturbed domestic wall surface. This research tries to understand this relationship with the surface through tragedy as a reciprocal agreement between surface and subject and not a permanent transference between one state and another. What the surface provides in times of personal struggle and turmoil is a method for us to come to terms with out material existence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.