949 resultados para Resolution in azimuth direction
Resumo:
Interactions between surface waves and sea ice are thought to be an important, but poorly understood, physical process in the atmosphere-ice-ocean system. In this work, airborne scanning lidar was used to observe ocean waves propagating into the marginal ice zone (MIZ). These represent the first direct spatial measurements of the surface wave field in the polar MIZ. Data were compared against two attenuation models, one based on viscous dissipation and one based on scattering. Both models were capable of reproducing the measured wave energy. The observed wavenumber dependence of attenuation was found to be consistent with viscous processes, while the spectral spreading of higher wavenumbers suggested a scattering mechanism. Both models reproduced a change in peak direction due to preferential directional filtering. Floe sizes were recorded using co-located visible imagery, and their distribution was found to be consistent with ice breakup by the wave field.
Resumo:
This dissertation investigates the relationship between investment and environmental obligations from the perspective of international investment law. In order to do so, the dissertation will consider how these obligations might enter into conflicts and what tools are available to investment tribunals to solve these normative conflicts. The dissertation analyses in order interpretative techniques, conflict resolution tools available in general international law, as expressed in the Vienna Convention on the Law of Treaties, and finally express clauses in international investment agreements. The dissertation includes the review of some relevant case law arising from investment agreements in investment treaty tribunals, to discover how in practice these conflict resolution tools are applied and to assess their effectiveness. This dissertation places itself squarely within the debate between the unity and the fragmentation of international law; therefore it tackles the issue of normative conflicts resolution in a dispute settlement environment with the view of gauging their value in maintaining the unity of international law and defuse the risk of fragmentation. The dissertation can only conclude that much work remains to be done, including by providing a more comprehensive taxonomy of possible interventions, both on the legal and political sphere.
Resumo:
International audience
Resumo:
Background: The presence of body posture changes among patients with temporomandibular disorders (TMD) has been a controversial issue in the literature, in which it supporters point out the muscular origin as the main etiological factors, mainly associated with postural changes in head. Due to this controversy, it is pertinent to check whether this relationship exists on the most common etiology of TMD, the disk displacement, which translates a biomechanical internal disorder of the temporomandibular joint (TMJ). Objectives: Assess body posture changes in subjects with internal derangement of the TMJ when compared to subjects without this biomechanical dysfunction, characterize the patterns of the jaw movements and assess to the muscle activation during jaw movements. Methods: 21 subjects with TMJ disc displacement (DD) (test group) and 21 subjects without any TMD (control group) was assessed for body posture changes through evaluation of several body segments by posturography and also was evaluated the postural balance reactions through the center of mass during jaw movements using a balance platform. For the characterization of the jaw movement patterns it was done a kinematic analysis during jaw movements (active ROM and path of the jaw). For the muscle activation during jaw movements it was evaluated the masseter, sternocleidomastoid and spinae erector muscles by surface electromyography (EMG). Results Discussion: Both groups show forward head posture and extension of the cervical spine, not noticing any other significant body posture changes in subjects with DD, and if we had to see in detail, in general, subjects without TMD shows more body posture changes than subjects with DD. The pattern of jaw movements is similar in both groups, but in subjects with DD the closing movements are more instable than the opening movements, related to a less effective movement control to counteract the force of gravity and the disk displacement. The bilateral muscle activation during jaw movements is higher in subjects with DD, likely related to a less stable pattern of movement which leads in a higher muscle activation to guide the movement and ensure the best as possible articular stability. Conclusion: The disk displacement with reduction should be viewed as part of a set of signs and symptoms that require an accurate musculoskeletal and psychosocial assessment towards an earlier diagnosis for reduction and control of the functional limiting factors. In this direction, it seems that the relevant set of limiting signs and symptoms deserve a particular attention by health care practitioners involved in the assessment and treatment of TMD, in order to define effective therapeutic options.
Resumo:
Performance on the task-switching paradigm is greatly affected by the amount of conflict between tasks. Compared to adults, children appear to be particularly influenced by this conflict, suggesting that the ability to resolve interference between tasks improves with age. We used the task-switching paradigm to investigate how this ability develops in mid-childhood. Experiment 1 compared 5- to 8-year-olds’ and 9- to 11-year-olds’ ability to switch between decisions about the colour of an object and its shape. The 5- to 8-year-olds were slower to switch task and experienced more interference from the irrelevant task than the 9-to 11-year-olds, suggesting a developmental improvement in resolving conflict between tasks during mid-childhood. Experiment 2 explored this further, examining the influence of stimulus and response interference at different ages. This was done by separating the colour and shape dimensions of the stimulus and reducing overlap between responses. The results supported the development of conflict resolution in task-switching during mid-childhood. They also revealed that a complex interplay of factors, including the tasks used and previous experience with the task, affected children’s shifting performance.
Resumo:
Several teams of researchers at multiple universities are currently measuring annual and seasonal fluxes of carbon dioxide and other greenhouses gases (nitrous oxide and methane) in riparian wetlands and upland forests in the Tenderfoot Creek Experimental Forest (TCEF), a subalpine watershed in the Little Belt Mountains, Montana. In the current thesis, the author characterized the geochemistry and stable carbon isotope composition of shallow groundwater, soil water, and stream water in upper Stringer Creek, near sites that are being investigated for gas chemistry and microbial studies. It was hypothesized that if methanogenesis were a dominant process in the riparian wetlands of upper Stringer Creek, then this should impart a characteristic signal in the measured stable isotopic composition of dissolved inorganic carbon in shallow groundwater. For the most part, the major solute composition of shallow groundwater in upper Stringer Creek was similar to that of the stream. However, several wells completed in wetland soil had highly elevated concentrations of Fe2+ and Mn2+ which were absent in the well-oxygenated surface water. Use of sediment pore-water samplers (peepers) demonstrated a rapid increase in Fe2+ and Mn2+ with depth, most feasibly explained by microbial reduction of Fe- and Mn-oxide minerals. In general, the pH of shallow groundwater was lower than that of the stream. Since concentrations of CO2 in the groundwater samples were consistently greater than atmospheric pCO2, exchange of CO2 gas across the stream/air interface occurred in one direction, from stream to air. Evasion of CO2 partly explains the higher pH values in the stream. Microbial processes involving breakdown of organic carbon, including aerobic respiration, anaerobic respiration, and methanogenesis, explain the occurrence of excess CO2 in the groundwater. In general, the isotopic composition of total dissolved inorganic carbon (DIC) decreased with increasing DIC concentration, consistent with aerobic and/or anaerobic respiration being the dominant metabolic process in shallow groundwater. However, a minority of wells contained high DIC concentrations that were anomalously heavy in u13C, and these same wells had elevated concentrations of dissolved methane. It is concluded that the wells with isotopically-heavier DIC have likely been influenced by acetoclastic methanogenesis. Results from shallow groundwater wells and one of the peeper samplers suggest a possible link between methanogenesis and bacterial iron reduction.
Resumo:
Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.^
Resumo:
The Maasai/Kikuyu agro-pastoral borderlands of Maiella and Enoosupukia, located in the hinterlands of Lake Naivasha’s agro-industrial hub, are particularly notorious in the history of ethnicised violence in the Kenya’s Rift Valley. In October 1993, an organised assault perpetrated by hundreds of Maasai vigilantes, with the assistance of game wardens and administration police, killed more than 20 farmers of Kikuyu descent. Consequently, thousands of migrant farmers were violently evicted from Enoosupukia at the instigation of leading local politicians. Nowadays, however, intercommunity relations are surprisingly peaceful and the cooperative use of natural resources is the rule rather than the exception. There seems to be a form of reorganization. Violence seems to be contained and the local economy has since recovered. This does not mean that there is no conflict, but people seem to have the facility to solve them peacefully. How did formerly violent conflicts develop into peaceful relations? How did competition turn into cooperation, facilitating changing land use? This dissertation explores the value of cross-cutting ties and local institutions in peaceful relationships and the non-violent resolution of conflicts across previously violently contested community boundaries. It mainly relies on ethnographic data collected between 2014 and 2015. The discussion therefore builds on several theoretical approaches in anthropology and the social sciences – that is, violent conflicts, cross-cutting ties and conflicting loyalties, joking relationships, peace and nonviolence, and institutions, in order to understand shared spaces that are experiencing fairly rapid social and economic changes, and characterised by conflict and coexistence. In the researched communities, cross-cutting ties and the split allegiances associated with them result from intermarriages, land transactions, trade, and friendship. By institutions, I refer to local peace committees, an attempt to standardise an aspect of customary law, and Nyumba Kumi, a strategy of anchoring community policing at the household level. In 2010, the state “implanted” these grassroots-level institutions and conferred on them the rights to handle specific conflicts and to prevent crime. I argue that the studied groups utilise diverse networks of relationships as adaptive responses to landlessness, poverty, and socio-political dynamics at the local level. Material and non-material exchanges and transfers accompany these social and economic ties and networks. In addition to being instrumental in nurturing a cohesive social fabric, I argue that such alliances could be thought of as strategies of appropriation of resources in the frontiers – areas that are considered to have immense agricultural potential and to be conducive to economic enterprise. Consequently, these areas are continuously changed and shaped through immigration, population growth, and agricultural intensification. However, cross-cutting ties and intergroup alliances may not necessarily prevent the occurrence or escalation of conflicts. Nevertheless, disputes and conflicts, which form part of the social order in the studied area, create the opportunities for locally contextualised systems of peace and non-violence that inculcate the values of cooperation, coexistence, and restraint from violence. Although the neo-traditional institutions (local peace committees and Nyumba Kumi) face massive complexities and lack the capacity to handle serious conflicts, their application of informal constraints in dispute resolution provides room for some optimism. Notably, the formation of ties and alliances between the studied groups, and the use of local norms and values to resolve disputes, are not new phenomena – they are reminiscent of historical patterns. Their persistence, particularly in the context of Kenya, indicates a form of historical continuity, which remains rather “undisturbed” despite the prevalence of ethnicised political economies. Indeed, the formation of alliances, which are driven by mutual pursuit of commodities (livestock, rental land, and agricultural produce), markets, and diversification, tends to override other identities. While the major thrust of social science literature in East Africa has focused on the search for root causes of violence, very little has been said about the conditions and practices of cooperation and non-violent conflict resolution. In addition, situations where prior violence turned into peaceful interaction have attracted little attention, though the analysis of such transitional phases holds the promise of contributing to applicable knowledge on conflict resolution. This study is part of a larger multidisciplinary project, “Resilience in East African Landscapes” (REAL), which is a Marie Curie Actions Innovative Training Networks (ITN) project. The principal focus of this multidisciplinary project is to study past, present, and future thresholds and sustainable trajectories in human-landscape interactions in East Africa over the last millennia. While other individual projects focus on long-term ecosystem dynamics and societal interactions, my project examines human-landscape interactions in the present and the very recent past (i.e. the period in which events and processes were witnessed or can still be recalled by today’s population). The transition from conflict to coexistence and from competition to cooperative use of previously violently contested land resources is understood here as enhancing adaptation in the face of social-political, economic, environmental, and climatic changes. This dissertation is therefore a contribution to new modes of resilience in human-landscape interactions after a collapse situation.
Resumo:
Effective and efficient implementation of intelligent and/or recently emerged networked manufacturing systems require an enterprise level integration. The networked manufacturing offers several advantages in the current competitive atmosphere by way to reduce, by shortening manufacturing cycle time and maintaining the production flexibility thereby achieving several feasible process plans. The first step in this direction is to integrate manufacturing functions such as process planning and scheduling for multi-jobs in a network based manufacturing system. It is difficult to determine a proper plan that meets conflicting objectives simultaneously. This paper describes a mobile-agent based negotiation approach to integrate manufacturing functions in a distributed manner; and its fundamental framework and functions are presented. Moreover, ontology has been constructed by using the Protégé software which possesses the flexibility to convert knowledge into Extensible Markup Language (XML) schema of Web Ontology Language (OWL) documents. The generated XML schemas have been used to transfer information throughout the manufacturing network for the intelligent interoperable integration of product data models and manufacturing resources. To validate the feasibility of the proposed approach, an illustrative example along with varied production environments that includes production demand fluctuations is presented and compared the proposed approach performance and its effectiveness with evolutionary algorithm based Hybrid Dynamic-DNA (HD-DNA) algorithm. The results show that the proposed scheme is very effective and reasonably acceptable for integration of manufacturing functions.
Resumo:
Solar resource assessment is essential for the different phases of solar energy projects, such as preliminary design engineering, financing including due diligence and, later, insurance phases. An important aspect is the long term resource estimation. This kind of estimation can only be obtained through the statistical analysis of long-term data series of solar radiation measurements, preferably ground measurements. This paper is a first step in this direction, with an initial statistical analysis performed over the radiation data from a national measurement network, consisting of eighty-nine meteorological stations. These preliminary results are presented in figures that represent the annual average values of Global Horizontal Irradiation (GHI) and its Variability in the Portuguese continental territory. These results show that the South of Portugal is the most suitable area for the implementation of medium to large scale solar plants.
Resumo:
High-resolution simulations of high precipitation events with the MESO-NHmodel are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over theMadeirawas better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified
Resumo:
Heat stress negatively affects wheat performance during its entire cycle, particularly during the reproductive stage. In view of the climate change and the prediction of a continued increase in temperature in the new future, it is urgent to concentrate efforts to discover novel genetic sources able to improve the resilience of wheat to heat stress. In this direction, this study addressed two different experiments in durum wheat to identify novel QTLs suitable to be applied in marker-assisted selection for heat tolerance. Chlorophyll fluorescence (ChlF) is a valuable indicator of plant response to environmental changes allowing a detailed assessment of PSII activity in view of its non-invasive measurement and high-throughput phenotyping. In the first study (Chapter 2), the Light-Induced Fluorescence Transient (LIFT) method was used to access ChlF data to map QTLs for ChlF-related traits during the vegetative growth stage in durum wheat under heat stress condition. Our results provide evidence that LIFT consistently measures ChlF at the level of high-throughput phenotyping combined with high accuracy which is required for Genome-Wide Association Study (GWAS) aimed at identifying genomic regions affecting PSII activity. The 50 QTLs identified for ChlF-related traits under heat stress mostly clustered into five chromosomes hotspots unrelated to phenology, a feature that makes these QTLs a valuable asset for marker-assisted breeding programs across different latitudes. In the second study (Chapter 3), a set of 183 accessions suitable for GWAS, was exposed to optimal and high temperature during two crop seasons under field conditions. Important agronomic traits were evaluated in order to identify valuable QTLs for GY and its components. The GWAS analysis identified several QTLs in the single years as well as in the joint analysis. From the total QTLs identified, 13 QTL clusters can be highlighted to be affecting heat tolerance across different years and/or different traits.
Resumo:
The city of tomorrow is a major integrating stake, which crosses a set of major broad spectrum domains. One of these areas is the instrumentation of this city and the ubiquity of the exchange of data, which will give the pulse of this city (sensors) and its breathing in a hyper-connected world within indoor and outdoor dense areas (data exchange, 5G and 6G). Within this context, the proposed doctorate project has the objective to realize cost- and energy- effective, short-range communication systems for the capillary wireless coverage of in-door environments with low electromagnetic impact and for highly dense outdoor networks. The result will be reached through the combined use of: 1) Radio over Fiber (RoF) Technology, to bring the Radio Frequency (RF) signal to the different areas to be covered. 2) Beamforming antennas to send in real time the RF power just in the direction(s) where it is really necessary.
Resumo:
The year 14,226 BP marks an important border in the actual radiocarbon (14C) calibration curve: the high resolution and precision characterising the first part (0 – 14,226 BP) of the curve are due to the potential represented by tree-ring datasets, which directly provide the atmospheric 14C content at the time of tree-rings formation with high resolution. They systematically decrease going back in time, where only a few floating tree-ring chronologies alternate to other low-resolution records. The lack of resolution in the dating procedure before 14,226 years BP leads to significant issues in the interpretation and untangling of tricky facts of our past, in the field of Human Evolution. Research on sub-fossil trees and the construction of new Glacial tree-ring chronologies can significantly improve the radiocarbon dating in terms of temporal resolution and precision until 55,000 years BP to clear puzzles in the Human Evolution history. In this thesis, the dendrochronological study, the radiocarbon dating and the extrapolation of environmental and climate information from sub-fossil trees found on the Portugal foreshore, remnants of a Glacial lagoonal forest, are presented. The careful sampling, the dendrochronological measurements and cross-dating, the application of the most suitable cellulose extraction protocol and the most advanced technologies of the MICADAS system at ETH-Zurich, led to the construction of a new 220-years long tree-ring site chronology and to high resolution, highly reliable and with a tight error range radiocarbon ages. At the moment, it results impossible to absolutely date this radiocarbon sequence by the comparison of Δ14C of the trees and 10 Be fluctuations from the ice-cores. For this reason, tree growth analysis, comparisons with a living pine stand and forest-fires history reconstruction have made it possible to hypothesize site and climate characteristics useful to constrain the positioning in time of the obtained radiocarbon sequence.
Resumo:
Neural representations (NR) have emerged in the last few years as a powerful tool to represent signals from several domains, such as images, 3D shapes, or audio. Indeed, deep neural networks have been shown capable of approximating continuous functions that describe a given signal with theoretical infinite resolution. This finding allows obtaining representations whose memory footprint is fixed and decoupled from the resolution at which the underlying signal can be sampled, something that is not possible with traditional discrete representations, e.g., grids of pixels for images or voxels for 3D shapes. During the last two years, many techniques have been proposed to improve the capability of NR to approximate high-frequency details and to make the optimization procedures required to obtain NR less demanding both in terms of time and data requirements, motivating many researchers to deploy NR as the main form of data representation for complex pipelines. Following this line of research, we first show that NR can approximate precisely Unsigned Distance Functions, providing an effective way to represent garments that feature open 3D surfaces and unknown topology. Then, we present a pipeline to obtain in a few minutes a compact Neural Twin® for a given object, by exploiting the recent advances in modeling neural radiance fields. Furthermore, we move a step in the direction of adopting NR as a standalone representation, by considering the possibility of performing downstream tasks by processing directly the NR weights. We first show that deep neural networks can be compressed into compact latent codes. Then, we show how this technique can be exploited to perform deep learning on implicit neural representations (INR) of 3D shapes, by only looking at the weights of the networks.