822 resultados para Repetitive-movement
Resumo:
One of the main purposes of mucogingival therapy is to obtain full root coverage. Several treatment modalities have been developed, but few techniques can provide complete root coverage in a class III Miller recession. Thus, the aim of this case report is to present a successful clinical case of a Miller class III gingival recession in which complete root coverage was obtained by means of a multidisciplinary approach. A 17-year-old Caucasian female was referred for treatment of a gingival recession on the mandibular left central incisor. The following procedures were planned for root coverage in this case: free gingival graft, orthodontic movement by means of alignment and leveling and coronally advanced flap (CAF). The case has been followed up for 12 years and the patient presents no recession, no abnormal probing depth and no bleeding on probing, with a wide attached gingiva band. A compromised tooth with poor prognosis, which would be indicated for extraction, can be treated by orthodontic movement and periodontal therapy, with possibility of 100% root coverage in some class III recessions.
Resumo:
Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes. © 2012 Springer Science+Business Media B.V.
Resumo:
Fish belonging to the genus Hypostomus are known for exhibiting a striking diversity in its karyotype structure, however the knowledge concerning the distribution patterns of heterochromatin and location of repetitive DNA sequences in the karyotypes is still limited. Aiming a better understanding of the chromosomal organization in this group, we analyzed three sympatric species of Hypostomus collected in the Hortelã stream, a component of the Paranapanema River basin, Botucatu/SP/Brazil. The analyses involved the cytogenetic characterization and chromosomal mapping of repetitive sequences and intra/interspecific comparisons using sequences of the cytochrome C oxidase subunit I. The results revealed that H. ancistroides presents a karyotype with 2n = 68 chromosomes, H. strigaticeps 2n = 72 chromosomes, and H. nigromaculatus 2n = 76 chromosomes. In addition to differences found in the diploid number, it was also observed variations in karyotypic formulae, amount of constitutive heterochromatin, and location of nucleolus organizer regions. The cytogenetic mapping of 5S and 18S rDNA, as well as of the H3 histone gene, disclosed a differential dispersion process among the three species. In some cases the Rex1 transposable element showed to be co-located with 5S rDNA sites. The molecular analyses support the cytogenetic data and represent an additional tool for the characterization of the analyzed species. The results evidenced that chromosomal variations are not restricted to differences in diploid number or karyotypic macrostructure in the genus Hypostomus, indicating that events such as transposition of heterochromatin and rDNA segments may participate in the differentiation process occurred in these species. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Examina las principales orientaciones de los movimientos sociales juveniles en la historia latinoamericana de este siglo.
Resumo:
How individual-level movement decisions in response to habitat edges influence population-level patterns of persistence and spread of a species is a major challenge in spatial ecology and conservation biology. Here, we integrate novel insights into edge behavior, based on habitat preference and movement rates, into spatially explicit growth-dispersal models. We demonstrate how crucial ecological quantities (e.g., minimal patch size, spread rate) depend critically on these individual-level decisions. In particular, we find that including edge behavior properly in these models gives qualitatively different and intuitively more reasonable results than those of some previous studies that did not consider this level of detail. Our results highlight the importance of new empirical work on individual movement response to habitat edges. © 2013 by The University of Chicago.
Resumo:
Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. © 2013 Bueno et al.
Resumo:
Background/Aim: The present research evaluated the induction of ankylosis and the eruption rate in rat incisors, with the aim of achieving stable anchorage for orthodontic tooth movement (OTM) of the molars. Material and methods: Fifteen male Wistar rats were used. In the Experimental group, the right superior incisor of each animal was extracted, denuded of the PDL and the dental papilla, and reimplanted. The Control group was the left superior incisors. The eruption rate was measured at 7, 10, 12, 14, and 16 days after replantation. NiTi closed springs with a 50cN release force were installed for additional 9 days, and the eruption rate was determined. Then, the rats were sacrificed, and ankylosis was examined by microscopic analysis. Differences with P < 0.01 were defined as statistically significant. Results: The eruption rates were 0 and 0.39 mm day-1 in the Experimental group and Control group, respectively. All incisors of the Experimental group showed ankylosis according to histological analysis. Conclusions: The methodology used to induce ankylosis in this study was effective for anchoring the incisors during the OTM of rat molars, eliminating the undesirable effects consequent to continuous eruption. © 2013 John Wiley & Sons A/S.
Resumo:
Background: The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X 1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X 2X2♀ sex chromosome systems. Results: Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C 0 t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions: These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. © 2013Palacios-Gimenez et al.; licensee BioMed Central Ltd.
Resumo:
Repetitive DNA sequences constitute a great portion of the genome of eukaryotes and are considered key components to comprehend evolutionary mechanisms and karyotypic differentiation. Aiming to contribute to the knowledge of chromosome structure and organization of some repetitive DNA classes in the fish genome, chromosomes of two allopatric populations of Astyanax bockmanni were analyzed using classic cytogenetics techniques and fluorescent in situ hybridization, with probes for ribosomal DNA sequences, histone DNA and transposable elements. These Astyanax populations showed the same diploid number (2n = 50), however with differences in chromosome morphology, distribution of constitutive heterochromatin, and location of 18S rDNA and retroelement Rex3 sites. In contrast, sites for 5S rDNA and H1, H3 and H4 histones showed to be co-located and highly conserved. Our results indicate that dispersion and variability of 18S rDNA and heterochromatin sites are not associated with macro rearrangements in the chromosome structure of these populations. Similarly, distinct evolutionary mechanisms would act upon histone genes and 5S rDNA, contributing to chromosomal association and co-location of these sequences. Data obtained indicate that distinct mechanisms drive the spreading of repetitive DNAs in the genome of A. bockmanni. Also, mobile elements may account for the polymorphism of the major rDNA sites and heterochromatin in this genus. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Geografia - FCT