871 resultados para Rejection-sampling Algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: An important challenge in conducting social research of specific relevance to harm reduction programs is locating hidden populations of consumers of substances like cannabis who typically report few adverse or unwanted consequences of their use. Much of the deviant, pathologized perception of drug users is historically derived from, and empirically supported, by a research emphasis on gaining ready access to users in drug treatment or in prison populations with higher incidence of problems of dependence and misuse. Because they are less visible, responsible recreational users of illicit drugs have been more difficult to study. Methods: This article investigates Respondent Driven Sampling (RDS) as a method of recruiting experienced marijuana users representative of users in the general population. Based on sampling conducted in a multi-city study (Halifax, Montreal, Toronto, and Vancouver), and compared to samples gathered using other research methods, we assess the strengths and weaknesses of RDS recruitment as a means of gaining access to illicit substance users who experience few harmful consequences of their use. Demographic characteristics of the sample in Toronto are compared with those of users in a recent household survey and a pilot study of Toronto where the latter utilized nonrandom self-selection of respondents. Results: A modified approach to RDS was necessary to attain the target sample size in all four cities (i.e., 40 'users' from each site). The final sample in Toronto was largely similar, however, to marijuana users in a random household survey that was carried out in the same city. Whereas well-educated, married, whites and females in the survey were all somewhat overrepresented, the two samples, overall, were more alike than different with respect to economic status and employment. Furthermore, comparison with a self-selected sample suggests that (even modified) RDS recruitment is a cost-effective way of gathering respondents who are more representative of users in the general population than nonrandom methods of recruitment ordinarily produce. Conclusions: Research on marijuana use, and other forms of drug use hidden in the general population of adults, is important for informing and extending harm reduction beyond its current emphasis on 'at-risk' populations. Expanding harm reduction in a normalizing context, through innovative research on users often overlooked, further challenges assumptions about reducing harm through prohibition of drug use and urges consideration of alternative policies such as decriminalization and legal regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans des contextes de post-urgence tels que le vit la partie occidentale de la République Démocratique du Congo (RDC), l’un des défis cruciaux auxquels font face les hôpitaux ruraux est de maintenir un niveau de médicaments essentiels dans la pharmacie. Sans ces médicaments pour traiter les maladies graves, l’impact sur la santé de la population est significatif. Les hôpitaux encourent également des pertes financières dues à la péremption lorsque trop de médicaments sont commandés. De plus, les coûts du transport des médicaments ainsi que du superviseur sont très élevés pour les hôpitaux isolés ; les coûts du transport peuvent à eux seuls dépasser ceux des médicaments. En utilisant la province du Bandundu, RDC pour une étude de cas, notre recherche tente de déterminer la faisabilité (en termes et de la complexité du problème et des économies potentielles) d’un problème de routage synchronisé pour la livraison de médicaments et pour les visites de supervision. Nous proposons une formulation du problème de tournées de véhicules avec capacité limitée qui gère plusieurs exigences nouvelles, soit la synchronisation des activités, la préséance et deux fréquences d’activités. Nous mettons en œuvre une heuristique « cluster first, route second » avec une base de données géospatiales qui permet de résoudre le problème. Nous présentons également un outil Internet qui permet de visualiser les solutions sur des cartes. Les résultats préliminaires de notre étude suggèrent qu’une solution synchronisée pourrait offrir la possibilité aux hôpitaux ruraux d’augmenter l’accessibilité des services médicaux aux populations rurales avec une augmentation modique du coût de transport actuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic catheterization is illustrated using vascular-access-port model SLA where the port is surgically placed subcutaneously on the back of the rat. The catheter is tunnelled to the neck and inserted into the jugular vein . Within 24 h rats showed normal blood pressure and blood samples were collected at intervals with minimal stress to the animals . A comparison of the plasma catecholamine of blood collected from vascular-access-ports with that obtained from decapitation indicates that there was minimal stress to the rats when blood was drawn through the vascular-access-port.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic algorithm has been used for null steering in phased and adaptive arrays . It has been shown that it is possible to steer the array null s precisely to the required interference directions and to achieve any prescribed null depths . A comparison with the results obtained from the analytic solution shows the advantages of using the genetic algorithm for null steering in linear array patterns

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of a compact microstrip band reject filter is proposed. The device consists of an Open Loop Rectangular Resonator (OLRR) coupled to a microstrip line. The transmission line has a U-bend which enhances the coupling with the OLRR element and reduces the size of the filter. The filter can be made tunable by mounting variable capacitance to the system. Simulated and experimental results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a parallel genetic algorithm for compressing scanned document images. A fitness function is designed with Hausdorff distance which determines the terminating condition. The algorithm helps to locate the text lines. A greater compression ratio has achieved with lesser distortion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over-sampling sigma-delta analogue-to-digital converters (ADCs) are one of the key building blocks of state of the art wireless transceivers. In the sigma-delta modulator design the scaling coefficients determine the overall signal-to-noise ratio. Therefore, selecting the optimum value of the coefficient is very important. To this end, this paper addresses the design of a fourthorder multi-bit sigma-delta modulator for Wireless Local Area Networks (WLAN) receiver with feed-forward path and the optimum coefficients are selected using genetic algorithm (GA)- based search method. In particular, the proposed converter makes use of low-distortion swing suppression SDM architecture which is highly suitable for low oversampling ratios to attain high linearity over a wide bandwidth. The focus of this paper is the identification of the best coefficients suitable for the proposed topology as well as the optimization of a set of system parameters in order to achieve the desired signal-to-noise ratio. GA-based search engine is a stochastic search method which can find the optimum solution within the given constraints.