937 resultados para Regular Linear System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regular-geometric-figure solution to the N-body problem is presented in a very simple way. The Newtonian formalism is used without resorting to a more involved rotating coordinate system. Those configurations occur for other kinds of interactions beyond the gravitational ones for some special values of the parameters of the forces. For the harmonic oscillator, in particular, it is shown that the N-body problem is reduced to N one-body problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral boson (SCB), in contradiction with some results appearing in the literature. We promote a canonical transformation that shows directly that the SCB is composed of two Floreanini-Jackiw particles with the same chirality in which the spectrum is a vacuumlike one. As another conflicting result, we prove that a Wess-Zumino (WZ) term used in the literature consists of a scalar field, once again denying the assertion that the WZ term adds a new degree of freedom to the SCB theory in order to modify the physics of the system. © 2001 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the stability of discrete-time linear systems subject to random jumps in the parameters, described by an underlying finite-state Markov chain. In the model studied, a stopping time τ Δ is associated with the occurrence of a crucial failure after which the system is brought to a halt for maintenance. The usual stochastic stability concepts and associated results are not indicated, since they are tailored to pure infinite horizon problems. Using the concept named stochastic τ-stability, equivalent conditions to ensure the stochastic stability of the system until the occurrence of τ Δ is obtained. In addition, an intermediary and mixed case for which τ represents the minimum between the occurrence of a fix number N of failures and the occurrence of a crucial failure τ Δ is also considered. Necessary and sufficient conditions to ensure the stochastic τ-stability are provided in this setting that are auxiliary to the main result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the effects of the series compensation on the electric power system for small-signal stability studies. Therefore, the system is modeled admitting the existence of the compensation and then, the equations are linearized and a linear model is obtained for a single machine-infinite bus power system with a compensator installed. The resulting model with nine defined constants is very similar to the Heffron & Phillips linear model widely used on the existent literature. Finally, simulations are executed for an example system, to analyze the behavior of these constants when loading the system. © 2004 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the dynamic behavior of self-synchronization and synchronization through mechanical interactions between the nonlinear self-excited oscillating system and two non-ideal sources are examined by numerical simulations. The physical model of the system vibrating consists of a non-linear spring of Duffing type and a nonlinear damping described by Rayleigh's term. This system is additional forced by two unbalanced identical direct current motors with limited power (non-ideal excitations). The present work mathematically implements the parametric excitation described by two periodically changing stiffness of Mathieu type that are switched on/off. Copyright © 2005 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linear quadratic Gaussian control of discrete-time Markov jump linear systems is addressed in this paper, first for state feedback, and also for dynamic output feedback using state estimation. in the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (T N), or the occurrence of a crucial failure event (τ δ), after which the system paralyzed. From the constructive method used here a separation principle holds, and the solutions are given in terms of a Kalman filter and a state feedback sequence of controls. The control gains are obtained by recursions from a set of algebraic Riccati equations for the former case or by a coupled set of algebraic Riccati equation for the latter case. Copyright © 2005 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil mechanical resistance to penetration (PR) has great influence on vegetative development as the root growth and the crop productivity change in inverse proportion. Thus, the objective of this research was to study correlation between the bean grain productivity and the PR in an Oxisol cultivated for four years in no-tillage system at FEIS/UNESP. The attributes PR and yield were determined in a regular grid with 119 sample points. The PR was determined in the layers of 0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.25-0.30 m. The results were submitted to procedures of descriptive statistics, linear correlation and geostatistic analysis. The linear correlation between the yield and PR was practically null, as in all soil layers investigated it showed determination coefficients (R2) smaller than 0.03 and not significant. The geostatistic analysis showed moderate structure of spatial dependency for PR in the layers of 0.05-0.10 and 0.10-0.15 m, and strong for yield; however, the conjugate spatial analysis of such attributes showed no correlation, therefore, the spatial variability of PR did not influence the yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an expert and interactive system for developing protection system for overhead and radial distribution feeders is proposed. In this system the protective devices can be allocated through heuristic and an optimized way. In the latter one, the placement problem is modeled as a mixed integer non-linear programming, which is solved by genetic algorithm (GA). Using information stored in a database as well as a knowledge base, the computational system is able to obtain excellent conditions of selectivity and coordination for improving the feeder reliability indices. Tests for assessment of the algorithm efficiency were carried out using a real-life 660-nodes feeder. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow-cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III). The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2-210 μmol l-1 H2O2 with a LD of 1.8 μmol l-1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10-5 mol l-1 and 6.8×10-5 mol l-1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 μg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved. Copyright © Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the fluoride intake from dentifrices with different fluoride concentrations ([F]) by children aged 24-36 months, as well as the influence of the dentifrice flavor in the amount of fluoride ingested during toothbrushing. Thirty-three children were randomly divided into 3 groups, according to the [F] in the dentifrices: G-A (523 μgF/g), G-B (1,062 μgF/g) and G-C (1,373 μgF/g). Dentifrices A and B are marketed for children, while dentifrice C is a regular product. The amount of F ingested was indirectly obtained, subtracting the amount expelled and the amount left on the toothbrush from the amount initially loaded onto the brush. The results were analyzed by ANOVA, Tukey's test and linear regression analysis (p < 0.05). Children ingested around 60% of the dentifrice loaded onto the brush, but no significant differences were seen among the groups (p > 0.05). Mean daily fluoride intake from dentifrice for G-A, G-B and G-C was 0.022 a, 0.032 a and 0.061 b mg F/kg body weight, respectively (p < 0.01). There was a strong positive correlation (r = 0.86, p < 0.0001) between the amount of dentifrice used and the amount of fluoride ingested during toothbrushing. The results indicate the need for instructing children's parents and care givers to use a small amount of dentifrice (< 0.3 g) to avoid excessive ingestion of fluoride. The use of low-[F] dentifrices by children younger than 6 years also seems to be a good alternative to minimize fluoride intake. Dentifrice flavor did not influence the percentage of fluoride intake.