1000 resultados para Rats ZDF
Resumo:
Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.
Resumo:
Systemic arterial hypertension (SAH) is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT), or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16) were randomly divided into the Laser Group (n = 8), which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8), which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group) and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group), revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group). Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.
Resumo:
Background: Combination therapy can play a significant role in the amelioration of several toxic effects of lead (Pb) and recovery from associated cardiovascular changes. Objective: To investigate the effects of combination therapy on the cardiovascular effects of perinatal lead exposure in young and adult rats Methods: Female Wistar rats received drinking water with or without 500 ppm of Pb during pregnancy and lactation. Twenty-two- and 70-day-old rat offspring who were or were not exposed to Pb in the perinatal period received meso-dimercaptosuccinic acid (DMSA), L-arginine, or enalapril and a combination of these compounds for 30 additional days. Noradrenaline response curves were plotted for intact and denuded aortas from 23-, 52-, 70-, and 100-day-old rats stratified by perinatal Pb exposure (exposed/unexposed) and treatment received (treated/untreated). Results: Systolic blood pressure was evaluated and shown to be higher in the 23-, 52-, 70-, and 100-day age groups with Pb exposure than in the corresponding control age groups: 117.8 ± 3.9*, 135.2 ± 1.3*, 139.6 ± 1.6*, and 131.7 ± 2.8*, respectively and 107.1 ± 1.8, 118.8 ± 2.1, 126.1 ± 1.1, and 120.5 ± 2.2, respectively (p < 0.05). Increased reactivity to noradrenaline was observed in intact, but not denuded, aortas from 52-, 70-, and 100-day-old exposed rats, and the maximum responses (g of tension) in the respective Pb-exposed and control age groups were as follows: 3.43 ± 0.16*, 4.32 ± 0.18*, and 4.21 ± 0.23*, respectively and 2.38 ± 0.33, 3.37 ± 0.13, and 3.22 ± 0.21, respectively (p < 0.05). Conclusions: All treatments reversed the changes in vascular reactivity to noradrenaline in rats perinatally exposed to Pb. The combination therapy resulted in an earlier restoration of blood pressure in Pb-exposed rats compared with the monotherapies, except for enalapril therapy in young rats. These findings represent a new approach to the development of therapeutic protocols for the treatment of Pb-induced hypertension.
Resumo:
Background: Ischemic postconditioning (IPost) is a method of protecting the heart against ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. Objective: The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Methods: Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Results: Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP) and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) during reperfusion in control rats (p < 0.05). However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NOx) levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05) and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05). Heart NOx concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05) higher and lower after IR and IPost, respectively, in the control groups. Conclusion: Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO) levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group.
Resumo:
Background: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO) (cyclan)](PF6)2, and trans-[RuII(NH3)4(4-acPy)(NO)]3+. Methods: Aortic rings were contracted with noradrenaline (10−6 M). After voltage stabilization, a single concentration (10−6 M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10−6 M and sodium nitroprusside at 10−6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10−6 M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.
Resumo:
AbstractBackground:Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries.Objective:This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR.Methods:Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination.Results:The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II.Conclusion:From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.
Resumo:
AbstractBackground:Hypertension is a public health problem and increases the incidence of cardiovascular diseases.Objective:To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats.Methods:Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP).Results:Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H.Conclusion:One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.
Resumo:
AbstractBackground:One of the most important thyroid hormone targets is the cardiovascular system. Hemodynamic changes, such as decreased resting heart rate (HR), myocardial contractility, and cardiac output, and increased diastolic pressure and systemic vascular resistance, have been observed in hypothyroid patients. Moreover, in these patients, ECG changes include sinus bradycardia and low voltage complexes (P waves or QRS complexes).Objective:This study aimed at evaluating the prophylactic effect of apelin on HR changes and QRS voltage that occur in propylthiouracil (PTU)-induced hypothyroid rats.Method:In this study, 48 adult male Wistar rats weighing 170-235g were randomly divided into 6 groups: Control group (normal saline ip injection + tap water gavage); P group (PTU 0.05%, in drinking water); A group (apelin 200 µg.kg-1.day-1, ip); PA group [co-administration of PTU and apelin]; PT group [co-administration of PTU + T4 (0.2 mg/g per day, gavage)]; and PAT group (co-administration of PTU, apelin and T4). All experiments were performed for 28 consecutive days, and then the animals were anesthetized with an ip injection of ketamine (80 mg/kg) and xylazine (12 mg/kg). Lead II electrocardiogram was recorded to calculate HR and QRS voltage.Results:Heart rate and QRS voltage increased more significantly in the hypothyroid group that consumed both apelin and T4 (201 ± 4 beat/min, 0.71 ± 0.02 mv vs. hypothyroid 145 ± 9 beat/min, 0.563 ± 0.015 mv; respectively).Conclusion:The co-administration of apelin and T4 showed a protective effect on QRS voltage and HR in PTU‑induced hypothyroid rats.
Resumo:
Abstract Background: Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. Objective: To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Methods: Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). Results: There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). Conclusion: GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca2+ transport.
Resumo:
Abstract Background: Sleep deprivation (SD) is strongly associated with elevated risk for cardiovascular disease. Objective: To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR) injury in male rats. Method: SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP); heart rate (HR); and the maximum rate of increase and decrease of left ventricular pressure (±dp/dt). Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP) was measured at start and end of study. Results: In the SD group, the baseline levels of LVDP (19%), +dp/dt (18%), and -dp/dt (21%) were significantly (p < 0.05) lower, and HR (32%) was significantly higher compared to the controls. After ischemia, hearts from SD group displayed a significant increase in HR together with a low hemodynamic function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days. Conclusion: Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR.
Resumo:
Background: Heart failure prediction after acute myocardial infarction may have important clinical implications. Objective: To analyze the functional echocardiographic variables associated with heart failure in an infarction model in rats. Methods: The animals were divided into two groups: control and infarction. Subsequently, the infarcted animals were divided into groups: with and without heart failure. The predictive values were assessed by logistic regression. The cutoff values predictive of heart failure were determined using ROC curves. Results: Six months after surgery, 88 infarcted animals and 43 control animals were included in the study. Myocardial infarction increased left cavity diameters and the mass and wall thickness of the left ventricle. Additionally, myocardial infarction resulted in systolic and diastolic dysfunction, characterized by lower area variation fraction values, posterior wall shortening velocity, E-wave deceleration time, associated with higher values of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among the infarcted animals, 54 (61%) developed heart failure. Rats with heart failure have higher left cavity mass index and diameter, associated with worsening of functional variables. The area variation fraction, the E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate were functional variables predictors of heart failure. The cutoff values of functional variables associated with heart failure were: area variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time < 42.11 and isovolumic relaxation time adjusted by heart rate < 69.08. Conclusion: In rats followed for 6 months after myocardial infarction, the area variation fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time adjusted by heart rate are predictors of heart failure onset.
Resumo:
Abstract Background: Resistance training (RT) has been recommended as a non-pharmacological treatment for moderate hypertension. In spite of the important role of exercise intensity on training prescription, there is still no data regarding the effects of RT intensity on severe hypertension (SH). Objective: This study examined the effects of two RT protocols (vertical ladder climbing), performed at different overloads of maximal weight carried (MWC), on blood pressure (BP) and muscle strength of spontaneously hypertensive rats (SHR) with SH. Methods: Fifteen male SHR ENT#091;206 ± 10 mmHg of systolic BP (SBP)ENT#093; and five Wistar Kyoto rats (WKY; 119 ± 10 mmHg of SBP) were divided into 4 groups: sedentary (SED-WKY) and SHR (SED-SHR); RT1-SHR training relative to body weight (~40% of MWC); and RT2-SHR training relative to MWC test (~70% of MWC). Systolic BP and heart rate (HR) were measured weekly using the tail-cuff method. The progression of muscle strength was determined once every fifteen days. The RT consisted of 3 weekly sessions on non-consecutive days for 12-weeks. Results: Both RT protocols prevented the increase in SBP (delta - 5 and -7 mmHg, respectively; p > 0.05), whereas SBP of the SED-SHR group increased by 19 mmHg (p < 0.05). There was a decrease in HR only for the RT1 group (p < 0.05). There was a higher increase in strength in the RT2 (140%; p < 0.05) group as compared with RT1 (11%; p > 0.05). Conclusions: Our data indicated that both RT protocols were effective in preventing chronic elevation of SBP in SH. Additionally, a higher RT overload induced a greater increase in muscle strength.
Resumo:
Abstract Background: Labdane-type diterpenes induce lower blood pressure via relaxation of vascular smooth muscle; however, there are no studies describing the effects of labdanes in hypertensive rats. Objective: The present study was designed to investigate the cardiovascular actions of the labdane-type diterpene ent-3-acetoxy-labda-8(17), 13-dien-15-oic acid (labda-15-oic acid) in two-kidney 1 clip (2K-1C) renal hypertension. Methods: Vascular reactivity experiments were performed in aortic rings isolated from 2K-1C and normotensive (2K) male Wistar rats. Nitrate/nitrite (NOx) measurement was performed in aortas by colorimetric assay. Blood pressure measurements were performed in conscious rats. Results: Labda-15-oic acid (0.1-300 µmol/l) and forskolin (0.1 nmol/l - 1 µmol/l) relaxed endothelium-intact and endothelium-denuded aortas from both 2K-1C and 2K rats. Labda-15-oic acid was more effective at inducing relaxation in endothelium-intact aortas from 2K pre-contracted with phenylephrine when compared to the endothelium-denuded ones. Forskolin was more potent than labda-15-oic acid at inducing vascular relaxation in arteries from both 2K and 2K-1C rats. Labda-15-oic acid-induced increase in NOx levels was lower in arteries from 2K-1C rats when compared to 2K rats. Intravenous administration of labda-15-oic acid (0.3-3 mg/kg) or forskolin (0.1-1 mg/kg) induced hypotension in conscious 2K-1C and 2K rats. Conclusion: The present findings show that labda-15-oic acid induces vascular relaxation and hypotension in hypertensive rats.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010