922 resultados para Rasch measurement model
Resumo:
Positron emission tomography (PET) with L-[methyl-11C]methionine was explored as an in vivo, noninvasive, quantitative method for measuring the protein synthesis rate (PSR) in paraspinal and hind limb muscles of anesthetized dogs. Approximately 25 mCi (1 Ci = 37 GBq) of L-[methyl-11C]methionine was injected intravenously, and serial images and arterial blood samples were acquired over 90 min. Data analysis was performed by fitting tissue- and metabolite-corrected arterial blood time-activity curves to a three-compartment model and assuming insignificant transamination and transmethylation in this tissue. PSR was calculated from fitted parameter values and plasma methionine concentrations. PSRs measured by PET were compared with arterio-venous (A-V) difference measurements across the hind limb during primed constant infusion (5-6 h) of L-[1-13C, methyl-2H3]methionine. Results of PET measurements demonstrated similar PSRs for paraspinal and hind limb muscles: 0.172 +/- 0.062 vs. 0.208 +/- 0.048 nmol-1.min-1.(g of muscle)-1 (P = not significant). PSR determined by the stable isotope technique was 0.27 +/- 0.050 nmol-1.min-1.(g of leg tissue)-1 (P < 0.07 from PET) and indicated that the contribution of transmethylation to total hind limb methionine utilization was approximately 10%. High levels of L-[methyl-11C]methionine utilization by bone marrow were observed. We conclude that muscle PSR can be measured in vivo by PET and that this approach offers promise for application in human metabolic studies.
Resumo:
Comunicación presentada en EVACES 2011, 4th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Varenna (Lecco), Italy, October 3-5, 2011.
Resumo:
A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.
Resumo:
The continuous improvement of management and assessment processes for curricular external internships has led a group of university teachers specialised in this area to develop a mixed model of measurement that combines the verification of skill acquisition by those students choosing external internships with the satisfaction of the parties involved in that process. They included academics, educational tutors of companies and organisations and administration and services personnel in the latter category. The experience, developed within University of Alicante, has been carried out in the degrees of Business Administration and Management, Business Studies, Economics, Advertising and Public Relations, Sociology and Social Work, all part of the Faculty of Economics and Business. By designing and managing closed standardised interviews and other research tools, validated outside the centre, a system of continuous improvement and quality assurance has been created, clearly contributing to the gradual increase in the number of students with internships in this Faculty, as well as to the improvement in satisfaction, efficiency and efficacy indicators at a global level. As this experience of educational innovation has shown, the acquisition of curricular knowledge, skills, abilities and competences by the students is directly correlated with the satisfaction of those parties involved in a process that takes the student beyond the physical borders of a university campus. Ensuring the latter is a task made easier by the implementation of a mixed assessment method, combining continuous and final assessment, and characterised by its rigorousness and simple management. This report presents that model, subject in turn to a persistent and continuous control, a model all parties involved in the external internships are taking part of. Its short-term results imply an increase, estimated at 15% for the last course, in the number of students choosing curricular internships and, for the medium and long-term, a major interweaving between the academic world and its social and productive environment, both in the business and institutional areas. The potentiality of this assessment model does not lie only in the quality of its measurement tools, but also in the effects from its use in the various groups and in the actions that are carried out as a result of its implementation and which, without any doubt and as it is shown below, are the real guarantee of a continuous improvement.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
What resources are universal for quantum computation? In the standard model of a quantum computer, a computation consists of a sequence of unitary gates acting coherently on the qubits making up the computer. This requirement for coherent unitary dynamical operations is widely believed to be the critical element of quantum computation. Here we show that a very different model involving only projective measurements and quantum memory is also universal for quantum computation. In particular, no coherent unitary dynamics are involved in the computation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new device has been developed to directly measure the bubble loading of particle-bubble aggregates in industrial flotation machines, both mechanical flotation cells as well as flotation column cells. The bubble loading of aggregates allows for in-depth analysis of the operating performance of a flotation machine in terms of both pulp/collection zone and froth zone performance. This paper presents the methodology along with an example showing the excellent reproducibility of the device and an analysis of different operating conditions of the device itself. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Background: Reliability or validity studies are important for the evaluation of measurement error in dietary assessment methods. An approach to validation known as the method of triads uses triangulation techniques to calculate the validity coefficient of a food-frequency questionnaire (FFQ). Objective: To assess the validity of an FFQ estimates of carotenoid and vitamin E intake against serum biomarker measurements and weighed food records (WFRs), by applying the method of triads. Design: The study population was a sub-sample of adult participants in a randomised controlled trial of beta-carotene and sunscreen in the prevention of skin cancer. Dietary intake was assessed by a self-administered FFQ and a WFR. Nonfasting blood samples were collected and plasma analysed for five carotenoids (alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, lycopene) and vitamin E. Correlation coefficients were calculated between each of the dietary methods and the validity coefficient was calculated using the method of triads. The 95% confidence intervals for the validity coefficients were estimated using bootstrap sampling. Results: The validity coefficients of the FFQ were highest for alpha-carotene (0.85) and lycopene (0.62), followed by beta- carotene (0.55) and total carotenoids (0.55), while the lowest validity coefficient was for lutein (0.19). The method of triads could not be used for b- cryptoxanthin and vitamin E, as one of the three underlying correlations was negative. Conclusions: Results were similar to other studies of validity using biomarkers and the method of triads. For many dietary factors, the upper limit of the validity coefficients was less than 0.5 and therefore only strong relationships between dietary exposure and disease will be detected.
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Resumo:
Objective. To assess the measurement properties of a simple index of symptom severity in osteoarthritis (OA) of the hips and knees. Methods. Both the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the proposed new Comprehensive Osteoarthritis Test (COAT) instrument were completed weekly by 125 subjects in the context of a randomized, 12-week, 3 parallel-arm clinical trial. The reliabilities of the various scales were assessed on a weekly basis by use of Cronbach's alpha coefficients. The validity of the COAT total scale was assessed by correlation with the WOMAC total scale on a weekly basis with correlation coefficients, and in terms of the correlations between subject-level intercepts and slopes over time. The relative responsiveness of the WOMAC and COAT total scales was assessed using a multilevel (longitudinal) multivariate (WOMAC, COAT) linear model. Results. The WOMAC and COAT total scales were highly reliable (mean over weeks: WOMAC alpha = 0.98; COAT alpha = 0.97). The correlations between the WOMAC and COAT scales were very high (mean over weeks = 0.92; subject-level intercepts = 0.91, slopes = 0.88). The COAT total scale was significantly more responsive than the WOMAC total scale in the active treatment (34.8% improvement vs 26.8%; p = 0.002). Conclusion. The COAT total scale is simple to administer, reliable, valid, and responsive to treatment effects.
Resumo:
We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.
Resumo:
Stickiness behavior of skim milk powder was investigated based on the mechanical property of the material during the glass-rubber transition. A thermally controlled device was developed for the static mechanical test. This device was attached to a texture analyzer, and skim milk powder, which was used as a model sample, was tested for its glass-rubber transition temperature (Tg-r) using static compression technique (creep test). Changes in compression probe distance as a function of temperature were recorded. Tg-r was determined, in the region where changes in the probe distance were observed, by using linear regression technique. The effect of sample quantity, compression force, and heating rate on the determination of Tg-r was investigated. All these parameters significantly influenced the Tg-r determination (p < 0.05). The Tg-r of skim milk powder measured by this novel technique was found closely correlated to its glass transition temperature (T-g) measured by DSC.
Resumo:
Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. Methods A japonica type rice, 'Namaga', was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create '3D virtual rice' plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The '3D virtual rice' reproduces the structural development of isolated plants and provides a good estimation of the fillering process, and of the accumulation of leaves. Conclusions The results indicated that the '3D virtual rice' has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion.