877 resultados para Ramírez, María del Carmen
Resumo:
Hay diferentes estados de esta ed
Resumo:
Sign.: [calderón-2calderones]4, A-C4
Resumo:
Texto fechado en Valencia a 3 de junio de 1670
Resumo:
Sign.: [calderón]4, A-F4
Resumo:
Tít. tomado de principio del texto
Resumo:
Capilla para el Colegio de Santa María del Pilar
Resumo:
Capilla del colegio de Santa María del Pilar
Resumo:
Church for the School "Santa María del Pilar"
Resumo:
El presente estudio se fundamenta en la investigación-acción-participativa (IAP), para buscar alternativas que tiendan al desarrollo local de un territorio. Se centra en la cuenca hidrográfica del rio Manglaralto-Santa Elena-Ecuador, aplicando un sistema metodológico participativo que considera las características peculiares del territorio, que se analizan geoespacialmente reconociendo la influencia de la dinámica de sus cambios y observando los móviles que la propiciaban. A través de mecanismos participativos, se conectan los aspectos técnicos para el conocimiento y el aprovechamiento racional del acuífero costero, con los valores de los habitantes del territorio, para mejorar su abastecimiento de agua y crear nuevas condiciones y oportunidades en el camino del desarrollo local, vislumbrando la sostenibilidad. Cabe indicar que el ente administrativo y propulsor es la Junta de Agua Potable Regional Manglaralto (JAPRM). La hipótesis del estudio considera, que los métodos participativos generan en la comunidad una respuesta basada en su identidad y sus deseos de mejorar, que propiciará una gestión del acuífero costero que conlleve al desarrollo local. Otra hipótesis complementaria estipula que las estrategias del gobierno respecto al turismo propicia un crecimiento en la demanda del agua del acuífero. En Manglaralto-Ecuador, una parroquia de 30.000 habitantes aproximadamente, donde la JAPRM, administra y suministra agua a 23.586 habitantes que cuenta en su organización, llevada por 6 representantes de las comunidades rurales que la conforman, empezaron hace 7 años a buscar una forma de lograr un cambio, de tener agua para el desarrollo de la comunidad. Buscaron ayuda por diferentes medios, políticos, económicas, sociales y encontraron como base fundamental a la cooperación con el Organismo Internacional de Energía Atómica (OIEA) y la Escuela Superior Politécnica del Litoral (ESPOL) para entrelazar aspectos técnicos, ambientales, sociales y culturales. La gestión del acuífero costero, desde la perspectiva del IAP repercute en el desarrollo de Manglaralto. También se realiza un análisis geoespacial-geoestadístico, para vislumbrar aspectos de cambios en el territorio ligados al crecimiento turístico, que afectan a la demanda del recurso agua proveniente del acuífero costero bajo la administración de la JAPRM. La tesis presenta el modelo integral y propio de la comunidad de Manglaralto, que refleja una evolución que alcanzó un apogeo en 2011 y parte del 2012, con 9 pozos de agua que daban servicio los 365 días del año, 24 horas al día ininterrumpidamente. Las condiciones externas (promociones turísticas de la ruta del Spondylus) han repercutido en nuevas problemáticas (crecimiento elevado de la demanda del agua). El acuífero costero se convierte en el emblema y móvil de solución, gracias a la gestión integral y a la interacción IAP que se amolda a la evolución de las condiciones, buscando soluciones para la comunidad y su entorno. El modelo integral del territorio con la participación de sus pobladores, considera el aspecto turístico, como un agente que propicia la mayor demanda del agua. Situación a la que hay que dar respuesta mediante la observación-reflexión en el ciclo del IAP para generar nuevas directrices estratégicas y gestionar el desarrollo local. ABSTRACT The present study is based on the participatory action research (PAR) methodology in order to look for alternatives which tend to the local development of a territory. It focuses on the Manglaralto hydrographic river basin located in Santa Elena-Ecuador through the application of the participatory methodology which considers the peculiar characteristics of the territory. These are geospatially analyzed recognizing the influence of its dynamic of changes and observing the causes that originated them. Through the use of participatory mechanisms, technical aspects are connected for stimulating knowledge and rational use of the coastal aquifer with the values of inhabitants of the territory to improve the water supply and create new conditions of sustainability. It is important to point out that the administrative organism and promoter is the Manglaralto Regional Fresh Water Board (JAPRM). In Manglaralto-Ecuador, a parish of approximately 30,000 inhabitants, the MRFWB manages and supplies water to 23.586 inhabitants. This organization is composed by 6 representatives of rural communities. It started 7 years ago looking for a way to achieve a change, from obtaining water to developing the community. They seeked for help in different fields such as: political, economic and social and they found International Atomic Energy Agency (IAEA) and Escuela Superior Politécnica del Litoral (ESPOL) as a fundamental basis for cooperation to bond technical, environmental, social and cultural aspects. Management of coastal aquifer, from the PAR perspective affects the development of Manglaralto. Also, a geospatial and geostatistical analysis is carried out to distinguish change aspects in territories related to touristy growth which affects the demand of water obtained from the coastal aquifer under the management of the MRFWB. The thesis presents a comprehensive model that belongs to the Manglaralto community and reveals an evolution that reached a peak in 2011 and part of 2012, with 9 water wells that operated the 365 days of the year 24 hours a day without interruption. The external conditions (touristic packages of Spondylus route) have created new problems (higher demand of water). The coastal aquifer is a symbol and solution, thanks to the comprehensive management and PAR interaction which fits the evolution of conditions, looking for solutions for the community and its surroundings. The comprehensive model of territory with the participation of inhabitants considers the touristic aspect as an agent which brings about a higher demand of water. This situation requests a response through the observation-reflection in the PAR cycle to generate new strategic guidelines and promote the local development.
Resumo:
Hay un ejemplar encuadernado con: Bandos divertidísimos contra los borrachos y borrachas, y gente aficionada al vino (NP849.91/3087).
Resumo:
Radon gas (Rn) is a natural radioactive gas present in some soils and able to penetrate buildings through the building envelope in contact with the soil. Radon can accumulate within buildings and consequently be inhaled by their occupants. Because it is a radioactive gas, its disintegration process produces alpha particles that, in contact with the lung epithelia, can produce alterations potentially giving rise to cancer. Many international organizations related to health protection, such as WHO, confirm this causality. One way to avoid the accumulation of radon in buildings is to use the building envelope as a radon barrier. The extent to which concrete provides such a barrier is described by its radon diffusion coefficient (DRn), a parameter closely related to porosity (ɛ) and tortuosity factor (τ). The measurement of the radon diffusion coefficient presents challenges, due to the absence of standard procedures, the requirement to establish adequate airtightness in testing apparatus (referred to here as the diffusion cell), and due to the fact that measurement has to be carried out in an environment certified for use of radon calibrated sources. In addition to this calibrated radon sources are costly. The measurement of the diffusion coefficient for non-radioactive gas is less complex, but nevertheless retains a degree of difficulty due to the need to provide reliably airtight apparatus for all tests. Other parameters that can characterize and describe the process of gas transport through concrete include the permeability coefficient (K) and the electrical resistivity (ρe), both of which can be measured relatively easily with standardized procedure. The use of these parameters would simplify the characterization of concrete behaviour as a radon barrier. Although earlier studies exist, describing correlation among these parameters, there is, as has been observed in the literature, little common ground between the various research efforts. For precisely this reason, prior to any attempt to measure radon diffusion, it was deemed necessary to carry out further research in this area, as a foundation to the current work, to explore potential relationships among the following parameters: porosity-tortuosity, oxygen diffusion coefficient, permeability coefficient and resistivity. Permeability coefficient measurement (m2) presents a more straightforward challenge than diffusion coefficient measurement. Some authors identify a relationship between both coefficients, including Gaber (1988), who proposes: k= a•Dn Equation 1 Where: a=A/(8ΠD020), A = sample cross-section, D020 = diffusion coefficient in air (m2/s). Other studies (Klink et al. 1999, Gaber and Schlattner 1997, Gräf and Grube et al. 1986), experimentally relate both coefficients of different types of concrete confirming that this relationship exists, as represented by the simplified expression: k≈Dn Equation 2 In each particular study a different value for n was established, varying from 1.3 to 2.5, but this requires determination of a value for n in a more general way because these proposed models cannot estimate diffusion coefficient. If diffusion coefficient has to be measured to be able to establish n, these relationships are not interesting. The measurement of electric resistivity is easier than diffusion coefficient measurement. Correlation between the parameters can be established via Einstein´s law that relates movement of electrical charges to media conductivity according to the expression: D_e=k/ρ Equation 3 Where: De = diffusion coefficient (cm2/s), K = constant, ρ = electric resistivity (Ω•cm). The tortuosity factor is used to represent the uneven geometry of concrete pores, which are described as being not straight, but tortuous. This factor was first introduced in the literature to relate global porosity with fluid transport in a porous media, and can be formulated in a number of different ways. For example, it can take the form of equation 4 (Mason y Malinauskas), which combines molecular and Knudsen diffusion using the tortuosity factor: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Equation 4 Where: r = medium radius obtained from MIP (µm), M = gas molecular mass, R = ideal gases constant, T = temperature (K), D0 = coefficient diffusion in the air (m2/s). Few studies provide any insight as to how to obtain the tortuosity factor. The work of Andrade (2012) is exceptional in this sense, as it outlines how the tortuosity factor can be deduced from pore size distribution (from MIP) from the equation: ∅_th=∅_0•ε^(-τ). Equation 5 Where: Øth = threshold diameter (µm), Ø0 = minimum diameter (µm), ɛ = global porosity, τ = tortuosity factor. Alternatively, the following equation may be used to obtain the tortuosity factor: DO2=D0*ɛτ Equation 6 Where: DO2 = oxygen diffusion coefficient obtained experimentally (m2/s), DO20 = oxygen diffusion coefficient in the air (m2/s). This equation has been inferred from Archie´s law ρ_e=〖a•ρ〗_0•ɛ^(-m) and from the Einstein law mentioned above, using the values of oxygen diffusion coefficient obtained experimentally. The principal objective of the current study was to establish correlations between the different parameters that characterize gas transport through concrete. The achievement of this goal will facilitate the assessment of the useful life of concrete, as well as open the door to the pro-active planning for the use of concrete as a radon barrier. Two further objectives were formulated within the current study: 1.- To develop a method for measurement of gas coefficient diffusion in concrete. 2.- To model an analytic estimation of radon diffusion coefficient from parameters related to concrete porosity and tortuosity factor. In order to assess the possible correlations, parameters have been measured using the standardized procedures or purpose-built in the laboratory for the study of equations 1, 2 y 3. To measure the gas diffusion coefficient, a diffusion cell was designed and manufactured, with the design evolving over several cycles of research, leading ultimately to a unit that is reliably air tight. The analytic estimation of the radon diffusion coefficient DRn in concrete is based on concrete global porosity (ɛ), whose values may be experimentally obtained from a mercury intrusion porosimetry test (MIP), and from its tortuosity factor (τ), derived using the relations expressed in equations 5 y 6. The conclusions of the study are: Several models based on regressions, for concrete with a relative humidity of 50%, have been proposed to obtain the diffusion coefficient following the equations K=Dn, K=a*Dn y D=n/ρe. The final of these three relations is the one with the determination coefficient closest to a value of 1: D=(19,997*LNɛ+59,354)/ρe Equation 7 The values of the obtained oxygen diffusion coefficient adjust quite well to those experimentally measured. The proposed method for the measurement of the gas coefficient diffusion is considered to be adequate. The values obtained for the oxygen diffusion coefficient are within the range of those proposed by the literature (10-7 a 10-8 m2/s), and are consistent with the other studied parameters. Tortuosity factors obtained using pore distribution and the expression Ø=Ø0*ɛ-τ are inferior to those from resistivity ρ=ρ0*ɛ-τ. The closest relationship to it is the one with porosity of pore diameter 1 µm (τ=2,07), being 7,21% inferior. Tortuosity factors obtained from the expression DO2=D0*ɛτ are similar to those from resistivity: for global tortuosity τ=2,26 and for the rest of porosities τ=0,7. Estimated radon diffusion coefficients are within the range of those consulted in literature (10-8 a 10-10 m2/s).ABSTRACT El gas radón (Rn) es un gas natural radioactivo presente en algunos terrenos que puede penetrar en los edificios a través de los cerramientos en contacto con el mismo. En los espacios interiores se puede acumular y ser inhalado por las personas. Al ser un gas radioactivo, en su proceso de desintegración emite partículas alfa que, al entrar en contacto con el epitelio pulmonar, pueden producir alteraciones del mismo causando cáncer. Muchos organismos internacionales relacionados con la protección de la salud, como es la OMS, confirman esta causalidad. Una de las formas de evitar que el radón penetre en los edificios es utilizando las propiedades de barrera frente al radón de su propia envolvente en contacto con el terreno. La principal característica del hormigón que confiere la propiedad de barrera frente al radón cuando conforma esta envolvente es su permeabilidad que se puede caracterizar mediante su coeficiente de difusión (DRn). El coeficiente de difusión de un gas en el hormigón es un parámetro que está muy relacionado con su porosidad (ɛ) y su tortuosidad (τ). La medida del coeficiente de difusión del radón resulta bastante complicada debido a que el procedimiento no está normalizado, a que es necesario asegurar una estanquidad a la celda de medida de la difusión y a que la medida tiene que ser realizada en un laboratorio cualificado para el uso de fuentes de radón calibradas, que además son muy caras. La medida del coeficiente de difusión de gases no radioactivos es menos compleja, pero sigue teniendo un alto grado de dificultad puesto que tampoco está normalizada, y se sigue teniendo el problema de lograr una estanqueidad adecuada de la celda de difusión. Otros parámetros que pueden caracterizar el proceso son el coeficiente de permeabilidad (K) y la resistividad eléctrica (ρe), que son más fáciles de determinar mediante ensayos que sí están normalizados. El uso de estos parámetros facilitaría la caracterización del hormigón como barrera frente al radón, pero aunque existen algunos estudios que proponen correlaciones entre estos parámetros, en general existe divergencias entre los investigadores, como se ha podido comprobar en la revisión bibliográfica realizada. Por ello, antes de tratar de medir la difusión del radón se ha considerado necesario realizar más estudios que puedan clarificar las posibles relaciones entre los parámetros: porosidad-tortuosidad, coeficiente de difusión del oxígeno, coeficiente de permeabilidad y resistividad. La medida del coeficiente de permeabilidad (m2) es más sencilla que el de difusión. Hay autores que relacionan el coeficiente de permeabilidad con el de difusión. Gaber (1988) propone la siguiente relación: k= a•Dn Ecuación 1 En donde: a=A/(8ΠD020), A = sección de la muestra, D020 = coeficiente de difusión en el aire (m2/s). Otros estudios (Klink et al. 1999, Gaber y Schlattner 1997, Gräf y Grube et al. 1986) relacionan de forma experimental los coeficientes de difusión de radón y de permeabilidad de distintos hormigones confirmando que existe una relación entre ambos parámetros, utilizando la expresión simplificada: k≈Dn Ecuación 2 En cada estudio concreto se han encontrado distintos valores para n que van desde 1,3 a 2,5 lo que lleva a la necesidad de determinar n porque no hay métodos que eviten la determinación del coeficiente de difusión. Si se mide la difusión ya deja de ser de interés la medida indirecta a través de la permeabilidad. La medida de la resistividad eléctrica es muchísimo más sencilla que la de la difusión. La relación entre ambos parámetros se puede establecer a través de una de las leyes de Einstein que relaciona el movimiento de cargas eléctricas con la conductividad del medio según la siguiente expresión: D_e=k/ρ_e Ecuación 3 En donde: De = coeficiente de difusión (cm2/s), K = constante, ρe = resistividad eléctrica (Ω•cm). El factor de tortuosidad es un factor de forma que representa la irregular geometría de los poros del hormigón, al no ser rectos sino tener una forma tortuosa. Este factor se introduce en la literatura para relacionar la porosidad total con el transporte de un fluido en un medio poroso y se puede formular de distintas formas. Por ejemplo se destaca la ecuación 4 (Mason y Malinauskas) que combina la difusión molecular y la de Knudsen utilizando el factor de tortuosidad: D=ε^τ (3/2r √(πM/8RT+1/D_0 ))^(-1) Ecuación 4 En donde: r = radio medio obtenido del MIP (µm), M = peso molecular del gas, R = constante de los gases ideales, T = temperatura (K), D0 = coeficiente de difusión de un gas en el aire (m2/s). No hay muchos estudios que proporcionen una forma de obtener este factor de tortuosidad. Destaca el estudio de Andrade (2012) en el que deduce el factor de tortuosidad de la distribución del tamaño de poros (curva de porosidad por intrusión de mercurio) a partir de la ecuación: ∅_th=∅_0•ε^(-τ) Ecuación 5 En donde: Øth = diámetro umbral (µm), Ø0 = diámetro mínimo (µm), ɛ = porosidad global, τ = factor de tortuosidad. Por otro lado, se podría utilizar también para obtener el factor de tortuosidad la relación: DO2=D0*-τ Ecuación 6 En donde: DO2 = coeficiente de difusión del oxígeno experimental (m2/s), DO20 = coeficiente de difusión del oxígeno en el aire (m2/s). Esta ecuación está inferida de la ley de Archie ρ_e=〖a•ρ〗_0•ɛ^(-m) y la de Einstein mencionada anteriormente, utilizando valores del coeficiente de difusión del oxígeno DO2 obtenidos experimentalmente. El objetivo fundamental de la tesis es encontrar correlaciones entre los distintos parámetros que caracterizan el transporte de gases a través del hormigón. La consecución de este objetivo facilitará la evaluación de la vida útil del hormigón así como otras posibilidades, como la evaluación del hormigón como elemento que pueda ser utilizado en la construcción de nuevos edificios como barrera frente al gas radón presente en el terreno. Se plantean también los siguientes objetivos parciales en la tesis: 1.- Elaborar una metodología para la medida del coeficiente de difusión de los gases en el hormigón. 2.- Plantear una estimación analítica del coeficiente de difusión del radón a partir de parámetros relacionados con su porosidad y su factor de tortuosidad. Para el estudio de las correlaciones posibles, se han medido los parámetros con los procedimientos normalizados o puestos a punto en el propio Instituto, y se han estudiado las reflejadas en las ecuaciones 1, 2 y 3. Para la medida del coeficiente de difusión de gases se ha fabricado una celda que ha exigido una gran variedad de detalles experimentales con el fin de hacerla estanca. Para la estimación analítica del coeficiente de difusión del radón DRn en el hormigón se ha partido de su porosidad global (ɛ), que se obtiene experimentalmente del ensayo de porosimetría por intrusión de mercurio (MIP), y de su factor de tortuosidad (τ), que se ha obtenido a partir de las relaciones reflejadas en las ecuaciones 5 y 6. Las principales conclusiones obtenidas son las siguientes: Se proponen modelos basados en regresiones, para un acondicionamiento con humedad relativa de 50%, para obtener el coeficiente de difusión del oxígeno según las relaciones: K=Dn, K=a*Dn y D=n/ρe. La propuesta para esta última relación es la que tiene un mejor ajuste con R2=0,999: D=(19,997*LNɛ+59,354)/ρe Ecuación 7 Los valores del coeficiente de difusión del oxígeno así estimados se ajustan a los obtenidos experimentalmente. Se considera adecuado el método propuesto de medida del coeficiente de difusión para gases. Los resultados obtenidos para el coeficiente de difusión del oxígeno se encuentran dentro del rango de los consultados en la literatura (10-7 a 10-8 m2/s) y son coherentes con el resto de parámetros estudiados. Los resultados de los factores de tortuosidad obtenidos de la relación Ø=Ø0*ɛ-τ son inferiores a la de la resistividad (ρ=ρ0*ɛ-τ). La relación que más se ajusta a ésta, siendo un 7,21% inferior, es la de la porosidad correspondiente al diámetro 1 µm con τ=2,07. Los resultados de los factores de tortuosidad obtenidos de la relación DO2=D0*ɛτ son similares a la de la resistividad: para la porosidad global τ=2,26 y para el resto de porosidades τ=0,7. Los coeficientes de difusión de radón estimados mediante estos factores de tortuosidad están dentro del rango de los consultados en la literatura (10-8 a 10-10 m2/s).
Resumo:
Tít. de la cub.: "Obras escojidas de Sta. Teresa de Jesús"
Resumo:
El proyecto de fin de grado reúne los conocimientos acerca de las poliolefinas en todo su ciclo de vida, centrando en las dos más utilizadas: poletileno y polipropileno. El primero presenta espectaculares propiedades como la transparencia o el alargamiento, mientras que el segundo tiene una buena resistencia al impacto y rigidez. El aumento en la demanda y la alta exigencia del mercado, requiere de la industria un polímero que consiga unir propiedades opuestas que de otra forma no podrían conseguir, y que marca la tendencia futura de la industria: los metalocenos.
Resumo:
Hay figuras que se escapan de sus contemporáneos como el agua entre los dedos. Autores difícilmente clasificables, cuya magnitud es apenas intuida hasta pasados muchos años del nacimiento de su obra. Hay autores que trabajan para siempre. Es el caso de artistas como Federico García Lorca, Antonio Gaudí, Franz Kafka, Víctor Erice, Andrei Tarkowski o tantos otros. Autores que avanzan en la oscuridad. Autores que caminan sin red por la cuerda floja, sin conocer hacia dónde van. Autores que exploran nuevos territorios en nombre de la humanidad. Autores que rozan lo inefable, que nos asoman al abismo insondable. Y a esta clase pertenece también el cineasta granadino José Val del Omar. Y se dice cineasta porque ni él mismo logró encontrar una palabra que definiera lo que hacía. Cinemista, cinegrafía, mecamística… son términos que necesitó forjar porque en la oscuridad los objetos se vuelven ininteligibles, pero necesitamos poner nombre a las cosas para que existan. Val del Omar está mucho más cerca de Rimbaud que de Willy Wilder a pesar de que las categorías convencionales digan lo contrario. La naturaleza de su obra se resiste por definición a cualquier análisis o método de razonamiento lógicodeductivo, y sin embargo sentimos la necesidad de abordarlo en el intento de adentrarnos un poco más en esas imágenes oníricas que sin saber porqué nos fascinan misteriosamente como mariposas atraídas por la luz, que diría el propio protagonista de este trabajo. Val del Omar dedicó su vida a producir apenas 61 minutos de celuloide, de los cuales 21 son objeto de este estudio, y sin embargo escribió literalmente miles de páginas sobre ello. Para escribir durante toda una vida basta observar lo que sucede en un vaso de agua, decía Valéry, y José Val del Omar descubrió, y nos descubrió a nosotros que el misterio se encierra en las cosas pequeñas, o como diría el maestro, “en los pliegues de lo chiquito”. Quien se dedica a profundizar en su entorno sabe bien que ése vislumbre se produce en contadas ocasiones y es sólo el premio de muchas horas, días, meses incluso años de trabajo. El genio de Granada filmó una y otra vez las pequeñas cosas de su entorno hasta prácticamente el día de su muerte, buscando desvelar este misterio de las cosas. José Val del Omar ha sido comparado en numerosas ocasiones con San Juan de la Cruz y Santa Teresa, ha sido definido como un inventor adelantado a su tiempo, ha sido calificado de visionario, de ingeniero, de artista, poeta…, y lo cierto es que todos y ninguno tienen razón, pues Val del Omar se transformó en su propia obra hasta el punto de confundirse con ella. Su figura resulta pues tan impenetrable como sus propias cintas y tan enigmática y fascinante como ellas...
Resumo:
In these proceedings we summarize the characteristics and current status of MEGARA, the future optical IFU and MOS for the 10.4 m GTC. MEGARA is being built by a Consortium led by the UCM (Spain) that also includes the INAOE (Mexico), the IAA-CSIC (Spain) and the UPM (Spain). The MEGARA IFU offers two different bundles, one called LCB with a field-of-view of 14 x 12 arcsec^2 and a spaxel size of 0.685 arcsec yielding spectral resolutions between R=6000-19000 and another one called SCB covering 10 x 8 arcsec^2 with 0.48 arcsec spaxels and resolutions R=8000-25000. The MOS component allows observing up to 100 targets in 3.5x3.5 arcmin^2. In September 2010 MEGARA was selected as the next optical spectrograph for GTC. Its PDR is scheduled for March 2012 with First Light on 2015.