866 resultados para Race, Ethnicity and Post-Colonial Studies
Resumo:
Phosphomolybdic acid (H3PMo12O40) along with niobium,pyridine and niobium exchanged phosphomolybdic acid catalysts were prepared. Ammonia adsorption microcalorimetry and methanol oxidation studies were carried out to investigate the acid sites strength acid/base/redox properties of each catalyst. The addition of niobium, pyridine or both increased the ammonia heat of adsorption and the total uptake. The catalyst with both niobium and pyridine demonstrated the largest number of strong sites. For the parent H3PMo12O40 catalyst, methanol oxidation favors the redox product. Incorporation of niobium results in similar selectivity to redox products but also results in no catalyst deactivation. Incorporation of pyridine instead changes to the selectivity to favor the acidic product. Finally, the inclusion of both niobium and pyridine results in strong selectivity to the acidic product while also showing no catalyst deactivation. Thus the presence of pyridine appears to enhance the acid property of the catalyst while niobium appears to stabilize the active site.
Resumo:
An electrospray source has been developed using a novel new fluid that is both magnetic and conductive. Unlike conventional electrospray sources that required microfabricated structures to support the fluid to be electrosprayed, this new electrospray fluid utilizes the Rosensweig instability to create the structures in the magnetic fluid when an external magnetic field was applied. Application of an external electric field caused these magnetic fluid structures to spray. These fluid based structures were found to spray at a lower onset voltage than was predicted for electrospray sources with solid structures of similar geometry. These fluid based structures were also found to be resilient to damage, unlike the solid structures found in traditional electrospray sources. Further, experimental studies of magnetic fluids in non-uniform magnetic fields were conducted. The modes of Rosensweig instabilities have been studied in-depth when created by uniform magnetic fields, but little to no studies have been performed on Rosensweig instabilities formed due to non-uniform magnetic fields. The measured spacing of the cone-like structures of ferrofluid, in a non-uniform magnetic field, were found to agree with a proposed theoretical model.
Resumo:
N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.
Resumo:
BACKGROUND AND OBJECTIVES Nicaragua is highly endemic for hepatitis A. We aimed to provide an estimate of the change in the age-specific risk of hepatitis A virus (HAV) infection based on serological data from cross-sectional and longitudinal samples collected in León, Nicaragua, in 1995/96 (n = 979) and 2003 (n = 494). METHODS The observed age-specific prevalence of anti-HAV antibodies was correlated to the age-specific risk of infection by calculating the probability of freedom from infection at a specific age. RESULTS The proportion of seropositive children aged 1.5 to 6 years was 42% in 2003 compared to 67% in 1995/96. Estimated annual risk of infection for a 3-year old child was 30% (95% CI: 27.0%, 33.1%) in 1995 and 15.5% (95% CI: 12.4%, 19.0%) in 2003. There was good agreement between estimates based on cross-sectional and longitudinal data. The age-specific geometric mean of the quantified anti-HAV antibody levels assessed in 2003 was highest at age 4 and decreased steadily up to age 40. CONCLUSIONS The substantially lower risk of HAV infection in 2003 than in 1995 for young children indicates a beginning transition from high to intermediate endemicity in León, Nicaragua. Consecutive age-stratified serosurveys are useful to assess changes in risk of infection following public health interventions. The decreasing age-specific GMC of anti-HAV antibodies during adulthood in a country with endemic HAV indirectly suggests that ongoing HAV exposure in the community has marginal boosting effect on antibody levels once protective immunity has been established by natural infection.
Resumo:
The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between -0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, -7.5±0.4 ‰/amu for Mg, -8.9±0.6 ‰/amu for Si, and -22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δ m/ m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).
Resumo:
Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples. Keywords
Resumo:
Students arrive at classes with a varying social situations and course subject knowledge. Blackboard is a web based course delivery program that permits testing of students before arriving at the first class. A pretest was used to assess preexisting subject knowledge(S) and a survey was used to assess non-subject (N) factors that might impact the student’s final grade. A posttest was administered after all content was delivered and used to access change in S. [See PDF for complete abstract]
Resumo:
Human pigmentation is a complex trait with the observed variation caused by the varied production of eumelanin (brown/black melanins) and phaeomelanin (red/yellow melanins) by the melanocytes. The melanocortin 1 receptor (MC1R), a G protein-coupled receptor expressed in the melanocytes, is a regulator eu- and phaeomelanin synthesis, and MC1R mutations causing skin and coat color changes are known in many mammals. To understand the role of MC1R in human pigmentation variation, I have sequenced the MC1R gene in 121 individuals sampled from world populations. In addition, I have sequenced the MC1R gene in common and pygmy chimpanzees, gorilla, orangutan, and baboon to study the evolution of MC1R and to infer the ancestral human MC1R sequence. The ancestral MC1R sequence is observed in all 25 African individuals studied, but at lower frequencies in the other populations examined, especially in East and Southeast Asians. The Arg163Gln variant is absent in the Africans studied, almost absent in Europeans, and at a low frequency in Indians, but is at an exceptionally high frequency (70%) in East and Southeast Asians. To further evaluate the role of MC1R variants in human pigmentation variation, I have combined these molecular evolution and population studies with functional assays on MC1R variants and primate MC1Rs. ^