953 resultados para RIBOSOMAL SEQUENCES
Resumo:
Given the non-monotonic form of the radiocarbon calibration curve, the precision of single C-14 dates on the calendar timescale will always be limited. One way around this limitation is through comparison of time-series, which should exhibit the same irregular patterning as the calibration curve. This approach can be employed most directly in the case of wood samples with many years growth present (but not able to be dated by dendrochronology), where the tree-ring series of unknown date can be compared against the similarly constructed C-14 calibration curve built from known-age wood. This process of curve-fitting has come to be called "wiggle-matching." In this paper, we look at the requirements for getting good precision by this method: sequence length, sampling frequency, and measurement precision. We also look at 3 case studies: one a piece of wood which has been independently dendrochronologically dated, and two others of unknown age relating to archaeological activity at Silchester, UK (Roman) and Miletos, Anatolia (relating to the volcanic eruption at Thera).
Resumo:
Current models of Pleistocene fluvial system development and dynamics are assessed from the perspective of European Lower and Middle Palaeolithic stone tool assemblages recovered from fluvial secondary contexts. Fluvial activity is reviewed both in terms of Milankovitch-scale processes across the glacial/interglacial cycles of the Middle and Late Pleistocene, and in response to sub-Milankovitch scale, high-frequency, low-magnitude climatic oscillations. The chronological magnitude of individual phases of fluvial activity is explored in terms of radiocarbon-dated sequences from the Late Glacial and early Holocene periods. It is apparent that fluvial activity is associated with periods of climatic transition, both high and low magnitude, although system response is far more universal in the case of the high magnitude glacial/ interglacial transitions. Current geochronological tools do not permit the development of high-resolution sequences for Middle Pleistocene sediments, while localised erosion and variable system responses do not facilitate direct comparison with the ice core records. However, Late Glacial and early Holocene sequences indicate that individual fluvial activity phases are relatively brief in duration (e.g. 10(2) and 10(3) yr). From an archaeological perspective, secondary context assemblages can only be interpreted in terms of a floating geochronology, although the data also permit a reinvestigation of the problems of artefact reworking. Copyright (c) 2005 John Wiley I Sons, Ltd.
Resumo:
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.
Resumo:
Real-time PCR protocols were developed to detect and discriminate 11 anastomosis groups (AGs) of Rhizoctonia solani using ribosomal internal transcribed spacer (ITS) regions (AG-1-IA, AG-1-IC, AG-2-1, AG-2-2, AG-4HGI+II, AG-4HGIII, AG-8) or beta-tubulin (AG-3, AG-4HGII, AG-5 and AG-9) sequences. All real-time assays were target group specific, except AG-2-2, which showed a weak cross-reaction with AG-2tabac. In addition, methods were developed for the high throughput extraction of DNA from soil and compost samples. The DNA extraction method was used with the AG-2-1 assay and shown to be quantitative with a detection threshold of 10-7 g of R. solani per g of soil. A similar DNA extraction efficiency was observed for samples from three contrasting soil types. The developed methods were then used to investigate the spatial distribution of R. solani AG-2-1 in field soils. Soil from shallow depths of a field planted with Brassica oleracea tested positive for R. solani AG-2-1 more frequently than soil collected from greater depths. Quantification of R. solani inoculum in field samples proved challenging due to low levels of inoculum in naturally occurring soils. The potential uses of real-time PCR and DNA extraction protocols to investigate the epidemiology of R. solani are discussed.
Resumo:
The DNA barcode potential of three regions (the nuclear ribosomal ITS and the plastid psbA-trnH and trnT-trnL intergenic spacers) was investigated for the plant genus Aspalathus L. (Fabaceac: Crotalarieae). Aspalathus is a large genus (278 species) that revealed low levels of DNA variation in phylogenetic studies. In a 51-species dataset for the psbA-trnH and ITS regions, 45%, and 16% of sequences respectively were identical to the sequence of at least one other species, with two species undiscriminated even when the two regions were combined. In contrast, trnT-trnL, discriminated between all species in this dataset. In a larger ITS and trnT-trnL dataset. including a further 82 species. 7 species in five pairwise comparisons remained Undiscriminated when the two regions were combined. Four of the five pairs of species not discriminated by sequence data were readily distinguished using a combination of qualitative and quantitative morphological data. The difficulty of barcoding in this group is increased by the presence of intraspecific variation in all three regions studied. In the case of psbA-trnH, three intraspecific samples had a sequence identical to at least one other species. Overall, psbA-trnH. currently a candidate for plant barcoding, was the least discriminatory region in our study.
Resumo:
Most newly sequenced proteins are likely to adopt a similar structure to one which has already been experimentally determined. For this reason, the most successful approaches to protein structure prediction have been template-based methods. Such prediction methods attempt to identify and model the folds of unknown structures by aligning the target sequences to a set of representative template structures within a fold library. In this chapter, I discuss the development of template-based approaches to fold prediction, from the traditional techniques to the recent state-of-the-art methods. I also discuss the recent development of structural annotation databases, which contain models built by aligning the sequences from entire proteomes against known structures. Finally, I run through a practical step-by-step guide for aligning target sequences to known structures and contemplate the future direction of template-based structure prediction.
Resumo:
We conducted the first molecular phylogenetic study of Ficus section Malvanthera (Moraceae; subgenus Urostigma) based on 32 Malvanthera accessions and seven outgroups representing other sections of Ficus subgenus Urostigma. We used DNA sequences from the nuclear ribosomal internal and external transcribed spacers (ITS and ETS), and the glyceraldehyde-3-phosphate dehydrogenase (G3pdh) region. Phylogenetic analysis using maximum parsimony, maximum likelihood and Bayesian methods recovered a monophyletic section Malvanthera to the exclusion of the rubber fig, Ficus elastica. The results of the phylogenetic analyses do not conform to any previously proposed taxonomic subdivision of the section and characters used for previous classification are homoplasious. Geographic distribution, however, is highly conserved and Melanesian Malvanthera are monophyletic. A new subdivision of section Malvanthera reflecting phylogenetic relationships is presented. Section Malvanthera likely diversified during a period of isolation in Australia and subsequently colonized New Guinea. Two Australian series are consistent with a pattern of dispersal out of rainforest habitat into drier habitats accompanied by a reduction in plant height during the transition from hemi-epiphytic trees to lithophytic trees and shrubs. In contradiction with a previous study of Pleistodontes phylogeny suggesting multiple changes in pollination behaviour, reconstruction of changes in pollination behaviour on Malvanthera, suggests only one or a few gains of active pollination within the section. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Buddenbrockia pluinatellae is an active, muscular, worm-shaped parasite of freshwater bryozoans. This rare and enigmatic animal has been assigned to the Myxozoa on the basis of 18S ribosomal DNA sequences and the presence of malacosporean spores. Here we report cloning of four homologous protein-coding genes from Buddenbrockia worms, the putatively conspecific sac-shaped parasite originally described as Tetracapsula bryozoides and the related sac-shaped parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Analyses are consistent with the hypothesis that Buddenbrockia is indeed a malacosporean myxozoan, but do not provide support for conspecificity with either T. bryozoides or T. bryosalmonae. Implications for the evolution of worm-like body plans in the Myxozoa are discussed.
Resumo:
Many families of interspersed repetitive DNA elements, including human Alu and LINE (Long Interspersed Element) elements, have been proposed to have accumulated through repeated copying from a single source locus: the "master gene." The extent to which a master gene model is applicable has implications for the origin, evolution, and function of such sequences. One repetitive element family for which a convincing case for a master gene has been made is the rodent ID (identifier) elements. Here we devise a new test of the master gene model and use it to show that mouse ID element sequences are not compatible with a strict master gene model. We suggest that a single master gene is rarely, if ever, likely to be responsible for the accumulation of any repeat family.
Resumo:
Micromorphological characters of the fruiting bodies, such as ascus-type and hymenial amyloidity, and secondary chemistry have been widely employed as key characters in Ascomycota classification. However, the evolution of these characters has yet not been studied using molecular phylogenies. We have used a combined Bayesian and maximum likelihood based approach to trace character evolution on a tree inferred from a combined analysis of nuclear and mitochondrial ribosomal DNA sequences. The maximum likelihood aspect overcomes simplifications inherent in maximum parsimony methods, whereas the Markov chain Monte Carlo aspect renders results independent of any particular phylogenetic tree. The results indicate that the evolution of the two chemical characters is quite different, being stable once developed for the medullary lecanoric acid, whereas the cortical chlorinated xanthones appear to have been lost several times. The current ascus-types and the amyloidity of the hymenial gel in Pertusariaceae appear to have been developed within the family. The basal ascus-type of pertusarialean fungi remains unknown. (c) 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89, 615-626.
Resumo:
Phylogenetic hypotheses for the largely South African genus Pelargonium L'Hér. (Geraniaceae) were derived based on DNA sequence data from nuclear, chloroplast and mitochondrial encoded regions. The datasets were unequally represented and comprised cpDNA trnL-F sequences for 152 taxa, nrDNA ITS sequences for 55 taxa, and mtDNA nad1 b/c exons for 51 taxa. Phylogenetic hypotheses derived from the separate three datasets were overall congruent. A single hypothesis synthesising the information in the three datasets was constructed following a total evidence approach and implementing dataset specific stepmatrices in order to correct for substitution biases. Pelargonium was found to consist of five main clades, some with contrasting evolutionary patterns with respect to biogeographic distributions, dispersal capacity, pollination biology and karyological diversification. The five main clades are structured in two (subgeneric) clades that correlate with chromosome size. One of these clades includes a "winter rainfall clade" containing more than 70% of all currently described Pelargonium species, and all restricted to the South African Cape winter rainfall region. Apart from (woody) shrubs and small herbaceous rosette subshrubs, this clade comprises a large "xerophytic" clade including geophytes, stem and leaf succulents, harbouring in total almost half of the genus. This clade is considered to be the result of in situ proliferation, possibly in response to late-Miocene and Pliocene aridification events. Nested within it is a radiation comprising c. 80 species from the geophytic Pelargonium section Hoarea, all characterised by the possession of (a series of) tunicate tubers.
Resumo:
BACKGROUND: Chronic fatigue syndrome (CFS) is an increasing medical phenomenon of unknown aetiology leading to high levels of chronic morbidity. Of the many hypotheses that purport to explain this disease, immune system activation, as a central feature, has remained prominent but unsubstantiated. Supporting this, a number of important cytokines have previously been shown to be over-expressed in disease subjects. The diagnosis of CFS is highly problematic since no biological markers specific to this disease have been identified. The discovery of genes relating to this condition is an important goal in seeking to correctly categorize and understand this complex syndrome. OBJECTIVE: The aim of this study was to screen for changes in gene expression in the lymphocytes of CFS patients. METHODS: 'Differential Display' is a method for comparing mRNA populations for the induction or suppression of genes. In this technique, mRNA populations from control and test subjects can be 'displayed' by gel electrophoresis and screened for differing banding patterns. These differences are indicative of altered gene expression between samples, and the genes that correspond to these bands can be cloned and identified. Differential display has been used to compare expression levels between four control subjects and seven CFS patients. RESULTS: Twelve short expressed sequence tags have been identified that were over-expressed in lymphocytes from CFS patients. Two of these correspond to cathepsin C and MAIL1 - genes known to be upregulated in activated lymphocytes. The expression level of seven of the differentially displayed sequences have been verified by quantifying relative level of these transcripts using TAQman quantitative PCR. CONCLUSION: Taken as a whole, the identification of novel gene tags up-regulated in CFS patients adds weight to the idea that CFS is a disease characterized by subtle changes in the immune system.
Resumo:
The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic β-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di-and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a β-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide β-strands into helical tapes, which then stack into fibrils.
Resumo:
Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA(Glu(UUC)), tRNA(LyS(UUU)), tRNA(Val(UAC)), and tRNA(Ala(GGC)). Five amplicons contained tRNA(Glu(UUC)) combined with two additional tRNA genes, including tRNA(Lys(UUU)), tRNA(Val(UAC)), or tRNA(Ala(UGC)). Five amplicons contained tRNA(Ile(GAU)) and tRNA(Ala(UGC)). Two amplicons contained tRNA(Glu(UUC)) and tRNA(Val(UGC)). Two different isoacceptor tRNA(Ala) genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA(Glu(UUC)) -tRNA(Val(UAC)) -tRNA(Ala(UGC)) and tRNA(Glu(UUC)) -tRNA(Ala(UGC)) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.