998 resultados para RELATIVISTIC WAVE-EQUATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study charmed baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector-meson exchanges to an SU(8) spin-flavor scheme, but differs considerably from the SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our dynamically generated states can be readily assigned to recently observed baryon resonances, while others do not have a straightforward identification and require the compilation of more data as well as an extension of the model to d-wave meson-baryon interactions and p-wave coupling in the neglected s- and u-channel diagrams. Of several novelties, we find that the Delta c(2595), which emerged as a ND quasibound state within the SU(4) approaches, becomes predominantly a ND* quasibound state in the present SU(8) scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the standard one-time dynamics of n nonrelativistic particles, the n-time equations of motion are inferred, and a variational principle is formulated. A suitable generalization of the classical LieKnig theorem is demonstrated, which allows the determination of all the associated presymplectic structures. The conditions under which the action of an invariance group is canonical are studied, and a corresponding Noether theorem is deduced. A formulation of the theory in terms of n first-class constraints is recovered by means of coisotropic imbeddings. The proposed approach also provides for a better understanding of the relativistic particle dynamics, since it shows that the different roles of the physical positions and the canonical variables is not peculiar to special relativity, but rather to any n-time approach: indeed a nonrelativistic no-interaction theorem is deduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive analytical expressions for the excitation energy of the isoscalar giant monopole and quadrupole resonances in finite nuclei, by using the scaling method and the extended ThomasFermi approach to relativistic mean-field theory. We study the ability of several nonlinear σω parameter sets of common use in reproducing the experimental data. For monopole oscillations the calculations agree better with experiment when the nuclear matter incompressibility of the relativistic interaction lies in the range 220260 MeV. The breathing-mode energies of the scaling method compare satisfactorily with those obtained in relativistic RPA and time-dependent mean-field calculations. For quadrupole oscillations, all the analyzed nonlinear parameter sets reproduce the empirical trends reasonably well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypernetted-chain formalism for boson-boson mixtures described by an extended Jastrow correlated wave function is derived, taking into account elementary diagrams and triplet correlations. The energy of an ideal boson 3He-4He mixture is computed for low values of the 3He concentration. The zero-3He-concentration limit provides a 3He chemical potential in good agreement with the experimental value, when a McMillan two-body correlation factor and the Lennard-Jones potential are adopted. If the Euler equations for the two-body correlation factors are solved in presence of triplet correlations, the agreement is again improved. At the experimental 4He equilibrium density, the 3He chemical potential turns out to be -2.58 K, to be compared with the experimental value, -2.79 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave-induced fluid flow at microscopic and mesoscopic scales arguably constitutes the major cause of intrinsic seismic attenuation throughout the exploration seismic and sonic frequency ranges. The quantitative analysis of these phenomena is, however, complicated by the fact that the governing physical processes may be dependent. The reason for this is that the presence of microscopic heterogeneities, such as micro-cracks or broken grain contacts, causes the stiffness of the so-called modified dry frame to be complex-valued and frequency-dependent, which in turn may affect the viscoelastic behaviour in response to fluid flow at mesoscopic scales. In this work, we propose a simple but effective procedure to estimate the seismic attenuation and velocity dispersion behaviour associated with wave-induced fluid flow due to both microscopic and mesoscopic heterogeneities and discuss the results obtained for a range of pertinent scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of hydrogenated amorphous silicon (a‐Si:H), deposited by square wave modulated (SQWM) rf silane discharges, have been studied through spectroscopic and real time phase modulated ellipsometry. The SQMW films obtained at low mean rf power density (19 mW/cm2) have shown smaller surface roughness than those obtained in standard continuous wave (cw) rf discharges. At higher rf powers (≥56 mW/cm2), different behaviors depending on the modulating frequency have been observed. On the one hand, at low modulating frequencies (<40 Hz), the SQWM films have shown a significant increase of porosity and surface roughness as compared to cw samples. On the other, at higher modulating frequencies, the material density and roughness have been found to be similar in SQWM and cw films. Furthermore, the deposition rate of the films show more pronounced increases with the modulating frequency as the rf power is increased. Experimental results are discussed in terms of plasma negative charged species which can be relatively abundant in high rf power discharges and cause significant effects on the deposited layers through polymers, clusters, and powder formation.