944 resultados para Quasi-one-dimensional


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrical conductivity and thermal diffusivity of pristine and iodine doped vanadyl naphthalocyanine (VONc) were studied. In the pristine sample, the temperature dependence was very weak below 300 K. The increase in conductivity at higher temperature must be due to an enhancement in carrier density with increase in thermal energy. The electrical conductivity of VONc increased when doped with iodine. The behavior of VONcI indicated that considerable changes have occurred in the electronic environment of the molecule as a result of doping. Iodine doping enhanced the thermal diffusivity of VONc. The increase in thermal diffusivity of the iodine doped sample may be due to the disorder of iodine atoms occupying the channels in one dimensional lattices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A laser-induced photoacoustic technique was employed to investigate thermal transport through nanocrystalline CePO4 samples prepared via the sol–gel route. Evaluation of thermal diffusivity was carried out using the one-dimensional model of Rosencwaig and Gersho for the reflection configuration of the photoacoustic method. Structural analyses of samples revealed that they are nanoporous in nature, possessing micron-sized grains. Analysis of results shows that thermal diffusivity value varies with sintering temperature. Results are explained in terms of the variation in porosity with sintering temperature and the effects of various scattering mechanisms on the propagation of phonons through the nanoporous ceramic matrix. Further analyses confirm that apart from porosity, grain boundary resistance and interface thermal resistance influence the effective value of thermal diffusivity of the samples under investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser-induced nondestructive photoacoustic (PA) technique has been employed to determine the thermal diffusivity of nanometal (Ag) dispersed ceramic alumina matrix sintered at different temperatures. The thermal diffusivity values are evaluated by knowing the transition frequency from the amplitude spectrum of PA signal using the one-dimensional heat flow model of Rosencwaig and Gersho. Analysis of the data shows that heat transport and hence the thermal diffusivity value is greatly affected by the influence of incorporation of foreign atom. It is also seen that sintering temperature affects the thermal diffusivity value in a substantial manner. The results are interpreted in terms of variation in porosity and carrier-assisted heat transport mechanism in nanometal dispersed ceramics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is a review of the work done on the dynamics of modulated logistic systems. Three different problems are treated, viz, the modulated logistic map, the parametrically perturbed logistic map and the combination map obtained by combining two maps of the quadratic family. Many of the interesting features displayed by these systems are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the stability properties of spatial and temporal periodic orbits of one-dimensional coupled-map lattices. The stability matrices for them are of the block-circulant form. This helps us to reduce the problem of stability of spatially periodic orbits to the smaller orbits corresponding to the building blocks of spatial periodicity, enabling us to obtain the conditions for stability in terms of those for smaller orbits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Step bunching develops in the epitaxy of SrRuO3 on vicinal SrTiO3(001) substrates. We have investigated the formation mechanisms and we show here that step bunching forms by lateral coalescence of wedgelike three-dimensional islands that are nucleated at substrate steps. After coalescence, wedgelike islands become wider and straighter with growth, forming a self-organized network of parallel step bunches with altitudes exceeding 30 unit cells, separated by atomically flat terraces. The formation mechanism of step bunching in SrRuO3, from nucleated islands, radically differs from one-dimensional models used to describe bunching in semiconducting materials. These results illustrate that growth phenomena of complex oxides can be dramatically different to those in semiconducting or metallic systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Arabian Sea is an area of complex air-sea interaction processes with seasonal reversing monsoons. The associated thermohaline variability in the upper layers appears to control the large scale monsoon flow which is not yet completely understood. The variability in the thermohaline fields is known to occur in temporal domain ranging from intra-diurnal to inter-annual time scales and on spatial domains of few tens of kilometers to few thousands of kilometers. In the Arabian Sea though the surface temperature was routinely measured by both conventional measurements and satellites, the corresponding information on the subsurface thermohaline field is very sparse due to the lack cw adequate measurements. In such cases the numerical models offer promise in providing information on the subsurface features given an initial thermohaline field and surface heat flux boundary conditions. This thesis is an outcome of investigations carried out on the various aspects of the thermohaline variability on different time scales. In addition to the description of the mean annual cycle. the one dimensional numerical models of Miller (1976) and Price et a1 (1986) are utilised to simulate the observed mixed layer characteristics at selected locations in the Arabian Sea on time scales ranging from intra-diurnal to synoptic scales under variable atmospheric forcing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic heterostructures with carbon nanotubes having multiple functionalities are fascinating materials which can be manipulated by means of an external magnetic field. In this paper we report our investigations on the synthesis and optical limiting properties of pristine cobalt nanotubes and high coercivity cobalt-in-carbon nanotubes (a new nanosystem where carbon nanotubes are filled with cobalt nanotubes). A general mobility assisted growth mechanism for the formation of one-dimensional nanostructures inside nanopores is verified in the case of carbon nanotubes. The open-aperture z-scan technique is employed for the optical limiting measurements in which nanosecond laser pulses at 532 nm have been used for optical excitation. Compared to the benchmark pristine carbon nanotubes these materials show an enhanced nonlinear optical absorption, and the nonlinear optical parameters calculated from the data show that these materials are efficient optical limiters. To the best of our knowledge this is the first report where the optical limiting properties of metal nanotubes are compared to those of carbon nanotubes