751 resultados para Qpcr
Resumo:
A high percentage of oesophageal adenocarcinomas show an aggressive clinical behaviour with a significant resistance to chemotherapy. Heat-shock proteins (HSPs) and glucose-regulated proteins (GRPs) are molecular chaperones that play an important role in tumour biology. Recently, novel therapeutic approaches targeting HSP90/GRP94 have been introduced for treating cancer. We performed a comprehensive investigation of HSP and GRP expression including HSP27, phosphorylated (p)-HSP27((Ser15)), p-HSP27((Ser78)), p-HSP27((Ser82)), HSP60, HSP70, HSP90, GRP78 and GRP94 in 92 primary resected oesophageal adenocarcinomas by using reverse phase protein arrays (RPPA), immunohistochemistry (IHC) and real-time quantitative RT-PCR (qPCR). Results were correlated with pathologic features and survival. HSP/GRP protein and mRNA expression was detected in all tumours at various levels. Unsupervised hierarchical clustering showed two distinct groups of tumours with specific protein expression patterns: The hallmark of the first group was a high expression of p-HSP27((Ser15, Ser78, Ser82)) and low expression of GRP78, GRP94 and HSP60. The second group showed the inverse pattern with low p-HSP27 and high GRP78, GRP94 and HSP60 expression. The clinical outcome for patients from the first group was significantly improved compared to patients from the second group, both in univariate analysis (p = 0.015) and multivariate analysis (p = 0.029). Interestingly, these two groups could not be distinguished by immunohistochemistry or qPCR analysis. In summary, two distinct and prognostic relevant HSP/GRP protein expression patterns in adenocarcinomas of the oesophagus were detected by RPPA. Our approach may be helpful for identifying candidates for specific HSP/GRP-targeted therapies.
Resumo:
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.
Resumo:
REASONS FOR PERFORMING STUDY: Sarcoids are nonmetastasising, yet locally aggressive skin tumours that constitute the most frequent neoplasm in equids. Infection by bovine papillomaviruses types 1 and 2 (BPV-1, BPV-2) has been recognised as major causative factor in sarcoid pathogenesis, but a possible correlation of intralesional virus load with disease severity has not been established thus far. HYPOTHESIS: Given the pathogenic role of BPV-1 and BPV-2 in sarcoid disease, we suggest that intralesional viral DNA concentration may reflect the degree of affection. METHODS: Severity of disease was addressed by recording the tumour growth kinetics, lesion number and tumour type for 37 sarcoid-bearing horses and one donkey. Viral load was estimated via quantitative real-time PCR (qPCR) of the E2, E5, L1 and L2 genes from the BPV-1/-2 genome for one randomly selected lesion per horse and correlated with disease severity. RESULTS: Quantitative PCR against E2 identified viral DNA concentrations ranging from 0-556 copies/tumour cell. Of 16 horses affected by quiescent, slowly growing single tumours or multiple mild-type lesions, 15 showed a viral load up to 1.4 copies per cell. In stark contrast, all equids (22/22) bearing rapidly growing and/or multiple aggressive sarcoids had a viral load between 3 and 569 copies per cell. Consistent results were obtained with qPCR against E5, L1 and L2. CONCLUSIONS: While tumours of the same clinical type carried variable virus load, confirming that viral titre does not determine clinical appearance, we identified a highly significant correlation between intralesional viral load and disease severity. POTENTIAL RELEVANCE: The rapid determination of BPV viral load will give a reliable marker for disease severity and may also be considered when establishing a therapeutic strategy.
Resumo:
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency 1%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls (P=2.8 × 10(-4) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients (P=1.2 × 10(-3) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control (P=4.3 × 10(-2)). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease.Molecular Psychiatry advance online publication, 20 November 2012; doi:10.1038/mp.2012.161.
Resumo:
Treatment plants that operate either thermophilic or mesophilic anaerobic digesters with centrifugal dewatering processes have consistently observed densities of fecal coliform and Escherichia coli, both indicator bacteria, that decrease during digestion but then increase after dewatering and storage. The increases have been characterized as two separate phenomena to explain this observation: 1) “Sudden Increase,” or SI, which is defined as the increase that occurs immediately after dewatering and 2) “regrowth,” which is defined as an increase during storage of cake samples over a period of hours or days. The SI observation appears to be more prevalent with biosolids that are generated with thermophilic processes and dewatered by centrifugation. Both thermophilic and mesophilic digesters with centrifuge dewatering processes have observed the regrowth phenomena. This research hypothesizes that the SI phenomenon is due to the presence of viable nonculturable (VNC) bacteria that are reactivated during dewatering. In other words, the bacteria were always present but were not enumerated by standard culturing methods (SCM). Analysis of the E. coli density in thermally treated solids by SCMs and quantitative real-time polymerase chain reaction (qPCR) indicated that E. coli densities are often underestimated by SCM. When analyzed with qPCR, the E. coli density after digestion can be 4-5 orders of magnitude greater than the non-detect levels identified by SCMs, which supports the non-culturable hypothesis. The VNC state describes a condition where bacteria are alive but unable to sustain the metabolic process needed for cellular division. Supplements added to culturing media were investigated to determine if the resuscitation of VNC bacteria could be enhanced. The autoinducer molecules Nhexanoyl- L-Homoserine lactone (C6-HSL), 3-oxo-N-octanoyl-L-Homoserine lactone (3-oxo- C8-HSL), and norepinephrine were unable to induce the resuscitation of VNC E. coli. Additional sampling was performed to determine if autoinducer molecules, peroxides, or other as of yet unknown inhibitory agents and toxins could be removed from biosolids during SCM. Culture media supplemented with the peroxide degrading compounds catalase, α-ketoglutaric acid, and sodium pyruvate was unable to resuscitate non-culturable E. coli. The additions of bentonite and exponential growth phase E. coli cell-free supernatant to culturing media were also unable to increase the culturability of E. coli. To remove inhibitory agents and toxins, a cell washing technique was employed prior to performing SCM; however, this cell washing technique may have increased cellular stresses that inhibited resuscitation since cell densities decreased. A novel laboratory-scale dewatering process was also investigated to determine if the SI and regrowth phenomena observed in full-scale centrifugal dewatering could be mimicked in the laboratory using a lab shearing device. Fecal coliform and E. coli densities in laboratory prepared cake samples were observed to be an order of magnitude higher than full-scale dewatered cakes. Additionally, the laboratory-scale dewatering process was able to resuscitate fecal coliforms and E. coli in stored sludge such that the density increased by 4-5 orders of magnitude from nondetect values. Lastly, the addition of aluminum sulfate during centrifuge dewatering at a full-scale utility produced an increased regrowth of fecal coliforms and E. coli that was sustained for 5 days.
Resumo:
Liver cirrhosis is associated with bacterial translocation (BT) and endotoxemia. Most translocating bacteria belong to the common intestinal microbiota, suggesting a breakdown of intestinal barrier function. We hypothesized that diminished mucosal antimicrobial host defense could predispose to BT. Two rodent models of portal hypertension with increased BT were used, CCl(4)-induced ascitic cirrhosis and 2-day portal vein-ligated (PVL) animals. BT was assessed by standard microbiological techniques on mesenteric lymph nodes. Total RNA was isolated systematically throughout the intestinal tract, and expression of Paneth cell α-cryptdins and β-defensins was determined by real-time quantitative polymerase chain reaction (qPCR). To determine functional consequences, mucosal antimicrobial activity was assessed with a fluorescence-activated cell sorting assay. BT was detectable in 40% of rats with cirrhosis. Compared with the group without BT, these animals exhibited diminished intestinal Paneth cell α-cryptdin 5 and 7 expression. In contrast, PVL was associated with BT in all animals but did not affect antimicrobial peptides. The decrease in Paneth cell antimicrobials was most pronounced in the ileum and the coecum. Other antimicrobials showed no changes or even an induction in the case of BT at different sites. Antimicrobial activity toward different commensal strains was reduced, especially in the distal ileum and the cecum in experimental cirrhosis with BT (excluding PVL). Conclusion: Compromised Paneth cell antimicrobial host defense seems to predispose to BT in experimental cirrhosis. Understanding this liver-gut axis including the underlying mechanisms could help us to find new treatment avenues.
Resumo:
Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron.
Resumo:
It has been highlighted that RNA quality and appropriate reference gene selection is crucial for the interpretation of RT-qPCR results in human placental samples. In this context we investigated the effect of RNA degradation on the mRNA abundance of seven frequently used reference genes in 119 human placental samples. Combining RNA integrity measurements, RT-qPCR analysis and mathematical modeling we found major differences regarding the effect of RNA degradation on the measured expression levels between the different reference genes. Furthermore, we demonstrated that a modified RNA extraction method significantly improved RNA quality and consequently increased transcript levels of all reference genes.
Resumo:
Our aim was to develop an explant model to define more precisely the early response of bovine mammary epithelial cells to infection. Therefore we investigated the mRNA expression encoding for some soluble immunological factors in lipopolysaccharide (LPS)-treated bovine mammary gland explants. Explants were taken out from the mammary gland of eight lactating cows after slaughter then incubated with LPS (10 mug/ml) for 6 h. The mRNA expression of alpha-lactalbumin (alpha-la), various cytokines, tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, IL-8, and two immunoglobulin receptors, the neonatal Fc receptor (FcRn) and polymeric immunoglobulin receptor (pIGR), were assessed with qPCR before and after 3 h and 6 h of LPS challenge. Both immunoglobulin receptors and alpha-la increased at 3 h then recovered their initial level at 6 h whereas IL-1beta, IL-6 and IL-8 increased only after 6 h (P<0.05). Surprisingly, TNF-alpha transcripts did not show any regulation in response to the LPS treatment. We nevertheless concluded that our model was valid to examine the short-term response of mammary epithelial cell challenged with LPS.
Resumo:
Background Molecular characterization of breast and other cancers by gene expression profiling has corroborated existing classifications and revealed novel subtypes. Most profiling studies are based on fresh frozen (FF) tumor material which is available only for a limited number of samples while thousands of tumor samples exist as formalin-fixed, paraffin-embedded (FFPE) blocks. Unfortunately, RNA derived of FFPE material is fragmented and chemically modified impairing expression measurements by standard procedures. Robust protocols for isolation of RNA from FFPE material suitable for stable and reproducible measurement of gene expression (e.g. by quantitative reverse transcriptase PCR, QPCR) remain a major challenge. Results We present a simple procedure for RNA isolation from FFPE material of diagnostic samples. The RNA is suitable for expression measurement by QPCR when used in combination with an optimized cDNA synthesis protocol and TaqMan assays specific for short amplicons. The FFPE derived RNA was compared to intact RNA isolated from the same tumors. Preliminary scores were computed from genes related to the ER response, HER2 signaling and proliferation. Correlation coefficients between intact and partially fragmented RNA from FFPE material were 0.83 to 0.97. Conclusion We developed a simple and robust method for isolating RNA from FFPE material. The RNA can be used for gene expression profiling. Expression measurements from several genes can be combined to robust scores representing the hormonal or the proliferation status of the tumor.
Resumo:
BACKGROUND: Culture-independent methods based on the 16S ribosomal RNA molecule are nowadays widely used for assessment of the composition of the intestinal microbiota, in relation to host health or probiotic efficacy. Because Bifidobacterium thermophilum was only recently isolated from human faeces until now, no specific real-time PCR (qPCR) assay has been developed for detection of this species as component of the bifidobacterial community of the human intestinal flora. RESULTS: Design of specific primers and probe was achieved based on comparison of 108 published bifidobacterial 16S rDNA sequences with the recently published sequence of the human faecal isolate B. thermophilum RBL67. Specificity of the primer was tested in silico by similarity search against the sequence database and confirmed experimentally by PCR amplification on 17 Bifidobacterium strains, representing 12 different species, and two Lactobacillus strains. The qPCR assay developed was linear for B. thermophilum RBL67 DNA quantities ranging from 0.02 ng/microl to 200 ng/microl and showed a detection limit of 10(5) cells per gram faeces. The application of this new qPCR assay allowed to detect the presence of B. thermophilum in one sample from a 6-month old breast-fed baby among 17 human faecal samples tested. Additionally, the specific qPCR primers in combination with selective plating experiments led to the isolation of F9K9, a faecal isolate from a 4-month old breast-fed baby. The 16S rDNA sequence of this isolate is 99.93% similar to that of B. thermophilum RBL67 and confirmed the applicability of the new qPCR assay in faecal samples. CONCLUSION: A new B. thermophilum-specific qPCR assay was developed based on species-specific target nucleotides in the 16S rDNA. It can be used to further characterize the composition of the bifidobacterial community in the human gastrointestinal tract. Until recently, B. thermophilum was considered as a species of animal origin, but here we confirm with the application of this new PCR assay the presence of B. thermophilum strains in the human gut.
Resumo:
Ethylene has myriad roles as a plant hormone, ranging from senescence and defending against pathogen attacks to fruit ripening and interactions with other hormones. It has been shown to increase cambial activity in poplar, but the effect on wood formation in Arabidopsis hypocotyl has not previously been studied. The Auxin-Regulated Gene involved in Organ Size (ARGOS), which increases organ size by lengthening the time for cell division, was found to be upregulated by ethylene. We tested the effect of ethylene treatment at 10 and 100 µM ACC on three genotypes of Arabidopsis, Col0 (wild-type), an ARGOS deficient mutant (argos), and ein3-1, an ethylene insensitive mutant. ARGOS expression analysis with qPCR indicated that ACC does induce ARGOS and ARGOS-LIKE (ARL) in the hypocotyl. As seen in poplar, ethylene also decreases stem elongation.Histochemical staining, showed that ethylene changes the way secondary xylem lignifies, causing gaps in lignification around the outer edge of secondary xylem. Our results also implied that ethylene treatment changes the proportion of secondary to total xylem, resulting in less secondary, whereas in poplar, ethylene treatment caused an increase.
Resumo:
BACKGROUND: Periodontitis is the major cause of tooth loss in adults and is linked to systemic illnesses, such as cardiovascular disease and stroke. The development of rapid point-of-care (POC) chairside diagnostics has the potential for the early detection of periodontal infection and progression to identify incipient disease and reduce health care costs. However, validation of effective diagnostics requires the identification and verification of biomarkers correlated with disease progression. This clinical study sought to determine the ability of putative host- and microbially derived biomarkers to identify periodontal disease status from whole saliva and plaque biofilm. METHODS: One hundred human subjects were equally recruited into a healthy/gingivitis group or a periodontitis population. Whole saliva was collected from all subjects and analyzed using antibody arrays to measure the levels of multiple proinflammatory cytokines and bone resorptive/turnover markers. RESULTS: Salivary biomarker data were correlated to comprehensive clinical, radiographic, and microbial plaque biofilm levels measured by quantitative polymerase chain reaction (qPCR) for the generation of models for periodontal disease identification. Significantly elevated levels of matrix metalloproteinase (MMP)-8 and -9 were found in subjects with advanced periodontitis with Random Forest importance scores of 7.1 and 5.1, respectively. The generation of receiver operating characteristic curves demonstrated that permutations of salivary biomarkers and pathogen biofilm values augmented the prediction of disease category. Multiple combinations of salivary biomarkers (especially MMP-8 and -9 and osteoprotegerin) combined with red-complex anaerobic periodontal pathogens (such as Porphyromonas gingivalis or Treponema denticola) provided highly accurate predictions of periodontal disease category. Elevated salivary MMP-8 and T. denticola biofilm levels displayed robust combinatorial characteristics in predicting periodontal disease severity (area under the curve = 0.88; odds ratio = 24.6; 95% confidence interval: 5.2 to 116.5). CONCLUSIONS: Using qPCR and sensitive immunoassays, we identified host- and bacterially derived biomarkers correlated with periodontal disease. This approach offers significant potential for the discovery of biomarker signatures useful in the development of rapid POC chairside diagnostics for oral and systemic diseases. Studies are ongoing to apply this approach to the longitudinal predictions of disease activity.
Resumo:
To address food safety concerns of the public regarding the potential transfer of recombinant DNA (cry1Ab) and protein (Cry1Ab) into the milk of cows fed genetically modified maize (MON810), a highly specific and sensitive quantitative real-time PCR (qPCR) and an ELISA were developed for monitoring suspicious presence of novel DNA and Cry1Ab protein in bovine milk. The developed assays were validated according to the assay validation criteria specified in the European Commission Decision 2002/657/EC. The detection limit and detection capability of the qPCR and ELISA were 100 copies of cry1Ab microL(-1) milk and 0.4 ng mL(-1) Cry1Ab, respectively. Recovery rates of 84.9% (DNA) and 97% (protein) and low (<15%) imprecision revealed the reliable and accurate estimations. A specific qPCR amplification and use of a specific antibody in ELISA ascertained the high specificity of the assays. Using these assays for 90 milk samples collected from cows fed either transgenic (n = 8) or non-transgenic (n = 7) rations for 6 months, neither cry1Ab nor Cry1Ab protein were detected in any analyzed sample at the assay detection limits.
Resumo:
Immune cells in the milk are most important in combating pathogens that invade the mammary gland. This study investigated the immune competence and viability of somatic milk cells that are already resident in milk and udders free of infection. Cells were studied in freshly removed milk to simulate conditions in the udder. Effects of incubation, cell preparation, and immunological stimulation with 0.5 mug/ml lipopolysaccharide (LPS) from Escherichia coli were analysed. Viability and differential counts of milk cells between high and low somatic cell count (SCC) quarters, and cisternal and alveolar milk with and without LPS stimulation were compared. Incubation and preparation of cells caused a cell loss which further increased with time independently of SCC and milk fraction. The viability of these cells was stable until 3 h post incubation and decreased until 6 h. Cell populations differed between both investigations, but did not change during the course of the experiment. mRNA expression of immune and apoptosis factors of the cells, measured by qPCR, did not change substantially: mRNA expression of caspase 3, Toll like receptor 4, and GM-CSF did not change, whereas the expression of the death receptor Fas/APO-1 (CD95), lactoferrin and lysozyme was decreased at 6 h. Cyclooxygenase-2 and TNF-alpha mRNA expression were decreased after 6 h of LPS treatment. In comparison with other studies in vivo or in vitro (in cell culture), in this study where cells are studied ex vivo (removed from the udder but kept in their natural environment, the milk) resident milk cells seem to be more vulnerable, less viable, less able to respond to stimulation, and thus less immune competent compared with cells that have freshly migrated from blood into milk after pathogen stimulation. The cell viability and differential cell count differed between high- and low-SCC milk and between cisternal and alveolar milk depending on the individual cow. In conclusion, the results support the view that for a most effective defence against invading pathogens the mammary gland is reliant on the recruitment of fresh immune cells from the blood.