978 resultados para Pulse Field Gel Electrophoresis
Resumo:
Radioiodinated recombinant human interferon-gamma (IFN gamma) bound to human monocytes, U937, and HL60 cells in a specific, saturable, and reversible manner. At 4 degrees C, the different cell types bound 3,000-7,000 molecules of IFN gamma, and binding was of comparable affinity (Ka = 4-12 X 10(8) M-1). No change in the receptor was observed after monocytes differentiated to macrophages or when the cell lines were pharmacologically induced to differentiate. The functional relevance of the receptor was validated by the demonstration that receptor occupancy correlated with induction of Fc receptors on U937. Binding studies using U937 permeabilized with digitonin showed that only 46% of the total receptor pool was expressed at the cell surface. The receptor appears to be a protein, since treatment of U937 with trypsin or pronase reduced 125I-IFN gamma binding by 87 and 95%, respectively. At 37 degrees C, ligand was internalized, since 32% of the cell-associated IFN gamma became resistant to trypsin stripping. Monocytes degraded 125I-IFN gamma into trichloroacetic acid-soluble counts at 37 degrees C but not at 4 degrees C, at an approximate rate of 5,000 molecules/cell per h. The receptor was partially characterized by SDS-polyacrylamide gel electrophoresis analysis of purified U937 membranes that had been incubated with 125I-IFN gamma. After cross-linking, the receptor-ligand complex migrated as a broad band that displayed an Mr of 104,000 +/- 18,000 at the top and 84,000 +/- 6,000 at the bottom. These results thereby define and partially characterize the IFN gamma receptor of human mononuclear phagocytes.
Resumo:
During the selection of monoclonal antibodies (MAb) raised against purified carcinoembryonic antigen (CEA), two MAbs were identified which immunoprecipitated a glycoprotein of 95 kD present both in perchloric acid extracts of normal lung and on the surface of normal granulocytes. This antigen was distinct from the previously reported normal glycoprotein crossreacting with CEA (NCA) which had a molecular weight of 55 kD. The difference between the smaller and the larger crossreacting antigens termed NCA-55 and NCA-95, respectively, was demonstrated by SDS-polyacrylamide gel electrophoresis, by elution from Sephadex-G200 and by selective binding to a series of anti-CEA MAb. Out of six MAb which all bound CEA purified from colon carcinoma, three did not react with these two crossreacting antigens, one bound only NCA-95, one reacted only with NCA-55 and one reacted with both NCA-55 and NCA-95. Immunoadsorbent purified preparations of 125I labelled NCA-95 and NCA-55 were found useful for the screening of new anti-CEA MAb. In addition, when tested on frozen sections of colon carcinoma, normal spleen, normal lung and pancreas, each type of MAb gave a clearly different pattern of reactivity. The three anti-CEA MAb which did not bind any of the crossreacting antigens stained only the colon carcinoma cells; the MAb binding to either one of the two types of NCA gave a similar pattern of reactivity both on colon carcinoma cells and on granulocytes. However, on normal lung and pancreas, the MAb binding NCA-55 stained granulocytes as well as bronchiolar and alveolar epithelial cells in lung and inter- and intra-lobular duct epithelial cells in pancreas, whereas the MAb binding only NCA-95 stained only the granulocytes. Thus, the newly identified NCA-95 appears to differ from NCA-55 not only in terms of molecular size and antigenicity but also by the fact that in normal lung and pancreas it is found in granulocytes but not in epithelial cells.
Resumo:
The objective of this work was to characterize 27 potato genotypes, using molecular markers. Polyacrylamide gel electrophoresis, RAPD techniques and isozymes of esterase, phosphoglucomutase and soluble proteins were analyzed in tubers, and isocitrate dehydrogenase, aspartate transaminase, phosphoglucomutase and peroxidase, in leaves. Eighteen primers were tested and four were chosen, kits OPX (01, 04 and 09) and OPY (07), to analyze RAPD markers in leaf extracts. Similarity and cluster analysis were conducted using Jaccard coefficient and the unweighted pair-group method using arithmetic average. Despite the differences detected in the analysis of proteins and isozymes in the tubers, as well as of isozymes in the leaves, the characterization of all genotypes through gel electrophoresis was not possible, while RAPD markers were efficient to characterize all the 27 genotypes.
Resumo:
Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.
Resumo:
We systematically varied conditions of two-dimensional (2D) agarose gel electrophoresis to optimize separation of DNA topoisomers that differ either by the extent of knotting, the extent of catenation or the extent of supercoiling. To this aim we compared electrophoretic behavior of three different families of DNA topoisomers: (i) supercoiled DNA molecules, where supercoiling covered the range extending from covalently closed relaxed up to naturally supercoiled DNA molecules; (ii) postreplicative catenanes with catenation number increasing from 1 to ∼15, where both catenated rings were nicked; (iii) knotted but nicked DNA molecules with a naturally arising spectrum of knots. For better comparison, we studied topoisomer families where each member had the same total molecular mass. For knotted and supercoiled molecules, we analyzed dimeric plasmids whereas catenanes were composed of monomeric forms of the same plasmid. We observed that catenated, knotted and supercoiled families of topoisomers showed different reactions to changes of agarose concentration and voltage during electrophoresis. These differences permitted us to optimize conditions for their separation and shed light on physical characteristics of these different types of DNA topoisomers during electrophoresis.
Resumo:
Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [gamma-(32)P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.
Resumo:
The objective of this work was to analyze the pattern of esterase activity in the development stages of Rhipicephalus microplus by nondenaturing polyacrylamide gel electrophoresis using specific staining for esterase. The electrophoretical results revealed the presence of nine regions displaying esterase activity, stained with both alpha-naphthyl acetate and beta-naphthyl acetate, and classified as alpha-beta-esterase. Stage-specific esterases were found, with the first nymphal and larval stages showing the greatest esterase activity throughout the development. An esterase called EST-4 was detected only in males and was considered sex-specific. There are differences in the esterase profile among the different postembryonic development stages of R. microplus.
Resumo:
The aim of the study is to evaluate the differences of protein binding of NAMI-A, a new ruthenium drug endowed with selective antimetastatic properties, and of cisplatin and to ascertain the possibility to use two drugs based on heavy metals in combination to treat solid tumour metastases. For this purpose, we have developed a technique that allows the proteins, to which metal drugs bind, to be identified from real protein mixtures. Following incubation with the drugs, the bands containing platinum and/or ruthenium are separated by native PAGE, SDS-PAGE and 2D gel electrophoresis, and identified using laser ablation inductively coupled plasma mass spectrometry. Both drugs interact with essentially the same proteins which, characterised by proteomics, are human serum albumin precursor, macroglobulin alpha 2 and human serotransferrin precursor. The interactions of NAMI-A are largely reversible whereas cisplatin forms stronger interactions that are less reversible. These data correlate well with the MCa mammary carcinoma model on which full doses of NAMI-A combined with cisplatin show additive effects as compared to each treatment taken alone, independently of whether NAMI-A precedes or follows cisplatin. Furthermore, the implication from this study is that the significantly lower toxicity of NAMI-A, compared to cisplatin, could be a consequence of differences in the mode of binding to plasma proteins, involving weaker interactions compared to cisplatin.
Resumo:
SCG10 is a neuron-specific, membrane-associated protein that is highly concentrated in growth cones of developing neurons. Previous studies have suggested that it is a regulator of microtubule dynamics and that it may influence microtubule polymerization in growth cones. Here, we demonstrate that in vivo, SCG10 exists in both phosphorylated and unphosphorylated forms. By two-dimensional gel electrophoresis, two phosphoisoforms were detected in neonatal rat brain. Using in vitro phosphorylated recombinant protein, four phosphorylation sites were identified in the SCG10 sequence. Ser-50 and Ser-97 were the target sites for protein kinase A, Ser-62 and Ser-73 for mitogen-activated protein kinase and Ser-73 for cyclin-dependent kinase. We also show that overexpression of SCG10 induces a disruption of the microtubule network in COS-7 cells. By expressing different phosphorylation site mutants, we have dissected the roles of the individual phosphorylation sites in regulating its microtubule-destabilizing activity. We show that nonphosphorylatable mutants have increased activity, whereas mutants in which phosphorylation is mimicked by serine-to-aspartate substitutions have decreased activity. These data suggest that the microtubule-destabilizing activity of SCG10 is regulated by phosphorylation, and that SCG10 may link signal transduction of growth or guidance cues involving serine/threonine protein kinases to alterations of microtubule dynamics in the growth cone.
Resumo:
An analysis of latent fingermark residues by Sodium-Dodecyl-Sulfate PolyAcrylamide Gel Electrophoresis (SDS-PAGE) followed by silver staining allowed the detection of different proteins, from which two major bands, corresponding to proteins of 56 and 64 kDa molecular weight, could be identified. Two other bands, corresponding to proteins of 52 and 48 kDa were also visualizable along with some other weaker bands of lower molecular weights. In order to identify these proteins, three antibodies directed against human proteins were tested on western blots of fingermarks residues: anti-keratin 1 and 10 (K1/10), anti-cathepsin-D (Cat.D) and anti-dermcidin (Derm.). The corresponding antigens are known to be present in the stratum corneum of desquamating stratified epithelium (K1/10, Cat.D) and/or in eccrine sweat (Cat.D, Derm.). The two major bands were identified as consistent with keratin 1 and 10. The pro-form and the active form of the cathepsin-D have also been identified from two other bands. Dermcidin could not be detected in the western blot. In addition, these antibodies have been tested on latent fingermarks left on polyvinylidene fluoride (PVDF) membrane, as well as on whitened and non-whitened paper. The detection of fingermarks was successful with all three antibodies.
Resumo:
Identification of thiol modifications has gained significant importance. It is increasingly recognized that cysteines play an important role in protein function under both physiological and patho-physiological conditions. Here we reviewed different approaches that are used to identify oxidized proteins and discuss different fluorescent labeling techniques, differential two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization - time of flight identification, in short MALDI-TOF. We illuminate processes that depend on protein oxidation of cysteines and we look into consequences of thiol oxidation during aging and in a variety of diseases, with a special reference to Alzheimer's disease. There is an urgent need for methods that detect specifically oxidized proteins and are able to distinguish different oxidation types.
Resumo:
HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens.
Resumo:
Extracts from young leaves of nine sweet cherry (Prunus avium L.) and eight sour cherry (Prunus cerasus L.) varieties, located in the germplasm collection of the 'Direção Regional de Agricultura da Beira Interior' (Fundão, Portugal), were analysed for five isozyme systems in order to characterise these varieties and detect problems of synonymies and homonymies that frequently present. The sweet and sour cherry varieties analyzed showed low isoenzymatic polymorphism, being PGM and PGI the systems with the highest discrimination power. These systems presented seven and five different zymogrames, respectively. IDH showed four patterns. SKDH and 6-PGD grouped the varieties only into two patterns. The evident and discriminant restrictions of this type of analysis had got results that have only been a complement for agronomical and morphological characterization.
Resumo:
Epicatechin conjugates obtained from grape have shown antioxidant activity in various systems. However, how these conjugates exert their antioxidant benefits has not been widely studied. We assessed the activity of epicatechin and epicatechin conjugates on the erythrocyte membrane in the presence and absence of a peroxyl radical initiator, to increase our understanding of their mechanisms. Thus, we studied cell membrane fluidity by fluorescence anisotropy measurements, morphology of erythrocytes by scanning electron microscopy, and finally, red cell membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our data showed that incubation of red cells in the presence of epicatechin derivatives altered membrane fluidity and erythrocyte morphology but not the membrane protein pattern. The presence in the medium of the peroxyl radical initiator 2,2′-azobis(amidinopropane) dihydrochloride (AAPH) resulted in membrane disruptions at all levels analyzed, causing changes in membrane fluidity, cell morphology, and protein degradation. The presence of antioxidants avoided protein oxidation, indicating that the interaction of epicatechin conjugates with the lipid bilayer might reduce the accessibility of AAPH to membranes, which could explain in part the inhibitory ability of these compounds against hemolysis induced by peroxidative insult.
Resumo:
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.