919 resultados para Protein Interaction Domains and Motifs
Resumo:
The effect of pH on the unfolding pathway acid the stability of the toxic protein abrin-II have been studied by increasing denaturant concentrations of guanidine hydrochloride and by monitoring the change in 8,1-anilino naphthalene sulfonic acid (ANS) fluorescence upon binding to the hydrophobic sites of the protein. Intrinsic protein fluorescence, far and near UV-circular dichroism (CD) spectroscopy and ANS binding studies reveal that the unfolding of abrin-II occurs through two intermediates at pH 7.2 and one intermediate at pH 4.5. At pH 7.2, the two subunits A and B of abrin-II unfold sequentially. The native protein is more stable at pH 4.5 than at pH 7.2. However, the stability of the abrin-II A-subunit is not affected by a change in pH. These observations may assist in an understanding of the physiologically relevant transmembrane translocation of the toxin.
Resumo:
Large-scale gene discovery has been performed for the grass fungal endophytes Neotyphodium coenophialum, Neotyphodium lolii, and Epichloë festucae. The resulting sequences have been annotated by comparison with public DNA and protein sequence databases and using intermediate gene ontology annotation tools. Endophyte sequences have also been analysed for the presence of simple sequence repeat and single nucleotide polymorphism molecular genetic markers. Sequences and annotation are maintained within a MySQL database that may be queried using a custom web interface. Two cDNA-based microarrays have been generated from this genome resource. They permit the interrogation of 3806 Neotyphodium genes (NchipTM microarray), and 4195 Neotyphodium and 920 Epichloë genes (EndoChipTM microarray), respectively. These microarrays provide tools for high-throughput transcriptome analysis, including genome-specific gene expression studies, profiling of novel endophyte genes, and investigation of the host grass–symbiont interaction. Comparative transcriptome analysis in Neotyphodium and Epichloë was performed
Resumo:
A nucleosome forms a basic unit of the chromosome structure. A biologically relevant question is how much of the nucleosomal conformational space is accessible to protein-free DNA, and what proportion of the nucleosomal conformations are induced by bound histones. To investigate this, we have analysed high resolution xray crystal structure datasets of DNA in protein-free as well as protein-bound forms, and compared the dinucleotide step parameters for the two datasets with those for high resolution nucleosome structures. Our analysis shows that most of the dinucleotide step parameter values for the nucleosome structures lie within the range accessible to protein-free DNA, indirectly indicating that the histone core plays more of a stabilizing role. The nucleosome structures are observed to assume smooth and nearly planar curvature, implying that ‘normal’ B-DNA like parameters can give rise to a curved geometry at the gross structural level. Different nucleosome
Resumo:
Structural and rheological features of a series of molecular hydrogels formed by synthetic bile salt analogues have been scrutinized. Among seven gelators, two are neutral compounds, while the others are cationic systems among which one is a tripodal steroid derivative. Despite the fact that the chemical structures are closely related, the variety of physical characteristics is extremely large in the structures of the connected fibers (either plain cylinders or ribbons), in the dynamical modes for stress relaxation of the associated SAFINs, in the scaling laws of the shear elasticity (typical of either cellular solids or fractal floc-like assemblies), in the micron-scale texture and the distribution of ordered domains (spherulites, crystallites) embedded in a random mesh, in the type of nodal zones (either crystalline-like, fiber entanglements, or bundles), in the evolution of the distribution and morphology of fibers and nodes, and in the sensitivity to added salt. SANS appears to be a suitable technique to infer all geometrical parameters defining the fibers, their interaction modes, and the volume fraction of nodes in a SAFIN. The tripodal system is particularly singular in the series and exhibits viscosity overshoots at the startup of shear flows, an “umbrella-like” molecular packing mode involving three molecules per cross section of fiber, and scattering correlation peaks revealing the ordering and overlap of 1d self-assembled polyelectrolyte species.
Resumo:
Employing a specific radioimmunoassay for quantification, the kinetics of estrogen-induced elevation in the plasma concentration of biotin-binding protein (BBP) in immature male chicks was investigated. A single injection of the steroid hormone enhanced the plasma BBP content several-fold at 6 h, reaching peak levels around 48 h and declining thereafter. A 2-fold amplification of the response was evident during secondary stimulation with the hormone. The magnitude of the response was hormonal dose-dependent while the initial lag phase and the time of peak protein accumulation were unaltered within the hormonal doses tested. The circulatory half-life of the specific protein in normal and estrogenized birds was 10 h. Hyperthyroidism markedly decreased the hormonal response while the opposite effect was seen during hypothyroidism. The antiestrogens E- and Z-clomiphene citrate effectively blocked the protein induction whereas progesterone, either alone or in combination with estrogen, was ineffective in modulating the induction. Cycloheximide administration drastically inhibited the inductive response. The above observations clearly suggest that the genes corresponding to the two isofunctional proteins of chicken egg, viz. BBP and avidin, are differentially regulated.
Resumo:
A high-affinity riboflavin -binding protein was isolated and characterized for the first time from pregnant-rat sera by affinity chromatography on a lumiflavin-agarose column. The purified protein was homogeneous by the criteria of analytical polyacrylamide-gel disc electrophoresis, gel-filtration chromatography on Sephadex G-100 and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. It had a molecular weight of 90000+/-5000 and interacted with [14C]riboflavin with a 1:1 molar ratio with a dissociation constant (Kd) of 0.42 micron.
Resumo:
Background: Queensland fruit fly, Bactrocera tryoni, is the major pest fruit fly in Australia. Protein bait sprays, where insecticides are mixed with spot applications of a protein based food lure, are one of the sustainable pre-harvest fruit fly management strategies used in Australia. Although protein bait sprays do manage fruit fly infestation in the field, there is little science underpinning this technique and so improving its efficacy is difficult. Lacking information includes where and when to apply protein bait in order to best target foraging B. tryoni. As part of new work in this area, we investigated the effect of height of protein on tree and host plant fruiting status on the spatial and temporal protein foraging patterns of B. tryoni. MEthod: The work was conducted in the field using nectarine and guava plants and wild B. tryoni at Redland Bay, Queensland, Australia. Spot sprays of protein bait were applied to the foliage of randomly selected fruiting and non-fruiting trees. Each tree received protein bait spot sprays on the lower and higher foliage at 0530hrs. The number, sex and species of flies that fed on each protein spot were recorded hourly from 0600hrs through to 1800hrs.Results: For nectarines, there was a significant difference in the number of B. tryoni feeding on protein bait placed at different locations within the tree (ANOVA, F = 8.898, p = 0.001). More flies fed on protein placed on higher foliage relative to lower, irrespective of the fruiting status of the nectarine trees. A significant difference was also observed in the diurnal protein feeding pattern of B. tryoni (ANOVA, F = 2.164, p = 0.024), with more flies feeding at 1600hrs. Results for guava are still being collected and will be presented at the meeting.Conclusions: We conclude that B. tryoni effectively forages for protein at heights higher than 1.3m from ground, indicating greater efficacy of protein bait when applied at foliage higher in the canopy. Bactrocera tryoni actively forages for protein throughout the day, with a highest feeding peak at 1600hrs. The lack of significant difference in the spatial protein foraging pattern between fruiting and non-fruiting nectarine trees may be a real result, or may have resulted from the fruiting tree being very close (within 1 – 2 metres) of the non-fruiting tree. This hypothesis is being tested in the guava trial.
Resumo:
Impatiens necrotic spot tospovirus (INSV) is a significant pathogen of ornamentals. The tripartite negative- and ambi-sense RNA genome encodes six proteins that are involved in cytoplasmic replication, movement, assembly, insect transmission and defence. To gain insight into the associations of these viral proteins, we determined their intracellular localization and interactions in living plant cells. Nucleotide sequences encoding the nucleoprotein N, non-structural proteins NSs and NSm, and glycoproteins Gn and Gc of a Kentucky isolate of INSV were amplified by RTPCR, cloned, sequenced and transiently expressed as fusions with autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana. All proteins accumulated at the cell periphery and co-localized with an endoplasmic reticulum marker. The Gc protein fusion also localized to the nucleus. N and NSm protein self-interactions and an NSm-N interaction were observed by using bimolecular fluorescence complementation. A tospovirus NSm homotypic interaction had not been reported previously.
Resumo:
The particles of Potato virus A (PVA; genus Potyvirus) are helically constructed filaments that contain multiple copies of a single type of coat-protein (CP) subunit and a single copy of genome-linked protein (VPg), attached to one end of the virion. Examination of negatively-stained virions by electron microscopy revealed flexuous, rod-shaped particles with no obvious terminal structures. It is known that particles of several filamentous plant viruses incorporate additional minor protein components, forming stable complexes that mediate particle disassembly, movement or transmission by insect vectors. The first objective of this work was to study the interaction of PVA movement-associated proteins with virus particles and how these interactions contribute to the morphology and function of the virus particles. Purified particles of PVA were examined by atomic force microscopy (AFM) and immuno-gold electron microscopy. A protrusion was found at one end of some of the potyvirus particles, associated with the 5' end of the viral RNA. The tip contained two virus-encoded proteins, the genome-linked protein (VPg) and the helper-component proteinase (HC-Pro). Both are required for cell-to-cell movement of the virus. Biochemical and electron microscopy studies of purified PVA samples also revealed the presence of another protein required for cell-to-cell movement the cylindrical inclusion protein (CI), which is also an RNA helicase/ATPase. Centrifugation through a 5-40% sucrose gradient separated virus particles with no detectable CI to a fraction that remained in the gradient, from the CI-associated particles that went to the pellet. Both types of particles were infectious. AFM and translation experiments demonstrated that when the viral CI was not present in the sample, PVA virions had a beads-on-a-string phenotype, and RNA within the virus particles was more accessible to translation. The second objective of this work was to study phosphorylation of PVA movement-associated and structural proteins (CP and VPg) in vitro and, if possible, in vivo. PVA virion structural protein CP is necessary for virus cell-to-cell movement. The tobacco protein kinase CK2 was identified as a kinase phosphorylating PVA CP. A major site of CK2 phosphorylation in PVA CP was identified as a single threonine within a CK2 consensus sequence. Amino acid substitutions affecting the CK2 consensus sequence in CP resulted in viruses that were defective in cell-to-cell and long-distance movement. The CK2 regulation of virion assembly and cell-to-cell movement by phosphorylation of CP was possibly due to the inhibition of CP binding to viral RNA. Four putative phosphorylation sites were identified from an in vitro phosphorylated recombinant VPg. All four were mutated and the spread of mutant viruses in two different host plants was studied. Two putative phosphorylation site mutants (Thr45 and Thr49) had phenotypes identical to that of a wild type (WT) virus infection in both Nicotiana benthamiana and N. tabacum plants. The other two mutant viruses (Thr132/Ser133 and Thr168) showed different phenotypes with increased or decreased accumulation rates, respectively, in inoculated and the first two systemically infected leaves of N. benthamiana. The same mutants were occasionally restricted to single cells in N. tabacum plants, suggesting the importance of these amino acids in the PVA infection cycle in N. tabacum.
Resumo:
Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.
Resumo:
Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.
Resumo:
Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.
Resumo:
Platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31), a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules with six Ig-like domains, has a range of functions, notably its contributions to leukocyte extravasation during inflammation and in maintaining vascular endothelial integrity. Although PECAM-1 is known to mediate cell adhesion by homophilic binding via domain 1, a number of PECAM-1 heterophilic ligands have been proposed. Here, the possibility that heparin and heparan sulfate (HS) are ligands for PECAM-1 was reinvestigated. The extracellular domain of PECAM-1 was expressed first as a fusion protein with the Fc region of human IgG1 fused to domain 6 and second with an N-terminal Flag tag on domain 1 (Flag-PECAM-1). Both proteins bound heparin immobilized on a biosensor chip in surface plasmon resonance (SPR) binding experiments. Binding was pH-sensitive but is easily measured at slightly acidic pH. A series of PECAM-1 domain deletions, prepared in both expression systems, were tested for heparin binding. This revealed that the main heparin-binding site required both domains 2 and 3. Flag-PECAM-1 and a Flag protein containing domains 1-3 bound HS on melanoma cell surfaces, but a Flag protein containing domains 1-2 did not. Heparin oligosaccharides inhibited Flag-PECAM-1 from binding immobilized heparin, with certain structures having greater inhibitory activity than others. Molecular modeling similarly identified the junction of domains 2 and 3 as the heparin-binding site and further revealed the importance of the iduronic acid conformation for binding. PECAM-1 does bind heparin/HS but by a site that is distinct from that required for homophilic binding.
Resumo:
The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
Resumo:
Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.