558 resultados para Prorocentrum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unprecedented series of ecological disturbances have been recurring within Florida Bay since the summer of 1987. Persistent and widespread phytoplankton and cyanobacteria blooms have coincided with the large scale decimation of sponge communities. One hypothesis is that the large scale loss of suspension-feeding sponges has rendered the Florida Bay ecosystem susceptible to these recurring blooms. The primary objective of this study was to experimentally evaluate the potential for suspension-feeding sponges to control nuisance phytoplankton blooms within Florida Bay prior to a large sponge die-off event. To achieve this objective, we determined the extent and biomass of the surviving sponge community in the different basins of Florida Bay. Many areas within Florida Bay possessed sponge densities and biomasses of 1 to 3 ind. m–2 or 100 to 300 g m–2 respectively. The dominant species includedSpheciospongia vesparia, Chondrilla nucula, Cinachyra alloclada, Tedania ignis and Ircinia sp., which accounted for 68% of individual sponges observed and 88% of sponge biomass. Laboratory grazing rates of these dominant sponges were experimentally determined on 4 different algal food treatments: a monoculture of cyanobacteria Synechococcus elongatus, a monoculture of the diatom Cyclotella choctawhatcheeana, a monoculture of the dinoflagellate Prorocentrum hoffmanianum, and an equal volume of the 3 monocultures combined. To estimate the impact of a mass sponge mortality event on the system-wide filtration rate of Florida Bay, we combined estimates of the current sponge biomass and laboratory sponge filtration rates with estimates of mean volumes of the sub-basins of Florida Bay. This study implies that the current blooms occurring within the central region of Florida Bay can be explained by the loss of the dominant suspension feeder in this system, and there is no need to invoke a new addition of nutrients within this region for the blooms to occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.