868 resultados para Process modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructure components. In recent years much research has been focused within this area with an aim to understanding the physics behind the filling of high-aspect ratio vias and trenches on PCB's and in particular how they can be made without the formation of voids in the deposited material. This paper describes some of the fundamental work towards the advancement of numerical models that can predict the electrodeposition process and addresses: i) A novel technique for interface motion based on a variation of a donor-acceptor technique ii) A methodology for the investigation of stress profiles in deposits iii) The implementation of acoustic forces to generate replenishing electrolytic flow circulation in recessed features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing complexity of new manufacturing processes and the continuously growing range of fabrication options mean that critical decisions about the insertion of new technologies must be made as early as possible in the design process. Mitigating the technology risks under limited knowledge is a key factor and major requirement to secure a successful development of the new technologies. In order to address this challenge, a risk mitigation methodology that incorporates both qualitative and quantitative analysis is required. This paper outlines the methodology being developed under a major UK grand challenge project - 3D-Mintegration. The main focus is on identifying the risks through identification of the product key characteristics using a product breakdown approach. The assessment of the identified risks uses quantification and prioritisation techniques to evaluate and rank the risks. Traditional statistical process control based on process capability and six sigma concepts are applied to measure the process capability as a result of the risks that have been identified. This paper also details a numerical approach that can be used to undertake risk analysis. This methodology is based on computational framework where modelling and statistical techniques are integrated. Also, an example of modeling and simulation technique is given using focused ion beam which is among the investigated in the project manufacturing processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the building evacuation context, wayfinding describes the process in which an individual located within an arbitrarily complex enclosure attempts to find a path which leads them to relative safety, usually the exterior of the enclosure. Within most evacuation modelling tools, wayfinding is completely ignored; agents are either assigned the shortest distance path or use a potential field to find the shortest path to the exits. In this paper a novel wayfinding technique that attempts to represent the manner in which people wayfind within structures is introduced and demonstrated through two examples. The first step is to encode the spatial information of the enclosure in terms of a graph. The second step is to apply search algorithms to the graph to find possible routes to the destination and assign a cost to the routes based on their personal route preferences such as "least time" or "least distance" or a combination of criteria. The third step is the route execution and refinement. In this step, the agent moves along the chosen route and reassesses the route at regular intervals and may decide to take an alternative path if the agent determines that an alternate route is more favourable e.g. initial path is highly congested or is blocked due to fire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite volume computer model of the continuous casting process for steel flat products has been developed. In this first stage, the model concentrates on the hydrodynamic aspects of the process and in particular the dynamic behavior of the metal/slag interface. The model was validated against experimental measurements obtained in a water model apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evacuation models have been playing an important function in the transition process from prescriptive fire safety codes to performance-based ones over the last three decades. In fact, such models became also useful tools in different tasks within fire safety engineering field, such as fire risks assessment and fire investigation. However, there are some difficulties in this process when using these models. For instance, during the evacuation modelling analysis, a common problem faced by fire safety engineers concerns the number of simulations which needs to be performed. In other terms, which fire designs (i.e., scenarios) should be investigated using the evacuation models? This type of question becomes more complex when specific issues such as the optimal positioning of exits within an arbitrarily structure needs to be addressed. Therefore, this paper presents a methodology which combines the use of evacuation models with numerical techniques used in the operational research field, such as Design of Experiments (DoE), Response Surface Models (RSM) and the numerical optimisation techniques. The methodology here presented is restricted to evacuation modelling analysis, nevertheless this same concept can be extended to fire modelling analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm’s law and the Butler–Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solder paste is the most widely used bonding material in the assembly of surface mount devices in electronic industries. It generally has a flocculated structure (show aggregation of solder particles), and hence are known to exhibit a thixotropic behavior. This is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this timedependent rheological behaviour of solder pastes is crucial for establishing the relationships between the pastes’ structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a novel method which has been developed for characterising the timedependent and non-Newtonian rheological behaviour of solder pastes as a function of shear rates. The objective of the study reported in this paper is to investigate the thixotropic build-up behaviour of solder pastes. The stretched exponential model(SEM) has been used to model the structural changes during the build-up process and to correlate model parameters with the paste printing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To develop an improved mathematical model for the prediction of dose accuracy of Dosators - based upon the geometry of the machine in conjunction with measured flow properties of the powder. Methods: A mathematical model has been created, based on a analytical method of differential slices - incorporating measured flow properties. The key flow properties of interest in this investigation were: flow function, effective angle of wall friction, wall adhesion, bulk density, stress ratio K and permeability. To simulate the real process and (very importantly) validate the model, a Dosator test-rig has been used to measure the forces acting on the Dosator during the filling stage, the force required to eject the dose and the dose weight. Results: Preliminary results were obtained from the Dosator test-rig. Figure 1 [Omitted] shows the dose weight for different depths to the bottom of the powder bed at the end of the stroke and different levels of pre-compaction of the powder bed. A strong influence over dose weight arising from the proximity between the Dosator and the bottom of the powder bed at the end of the stroke and the conditions of the powder bed has been established. Conclusions: The model will provide a useful tool to predict dosing accuracy and, thus, optimise the future design of Dosator based equipment technology – based on measured bulk properties of the powder to be handled. Another important factor (with a significant influence) on Dosator processes, is the condition of the powder bed and the clearance between the Dosator and the bottom of the powder bed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a fully coupled temperature–displacement finite element modelling of the injection stretch-blow moulding (ISBM) process of polyethylene terephthalate (PET) bottles using ABAQUS with a view to optimising the process conditions. A physically-based material model (Buckley model) was used to predict the mechanical behaviour of PET at temperatures slightly above its glass transition temperature. A model incorporating heat transfer between the stretch rod, the preform and the mould was built using axisymmetric solid elements. Extensive finite element analyses were carried out to predict the deformation, the distribution and history of strain and temperature during ISBM of a 20 g–330 ml bottle, which was made in an in situ test on a Sidel SB06 machine. Comparisons of numerical results with the measurements demonstrate that the model can satisfactorily model the sidewall thickness and material distributions. It is also shown that significant non-linear differentials exist in temperature and strain in both bottle thickness and length directions during the process. This justifies the employment of a volume approach to accurately predict the final mechanical properties of the bottles governed by the orientation and crystallinity which are highly temperature and strain dependent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article presents cost modeling results from the application of the Genetic-Causal cost modeling principle. Industrial results from redesign are also presented to verify the opportunity for early concept cost optimization by using Genetic-Causal cost drivers to guide the conceptual design process for structural assemblies. The acquisition cost is considered through the modeling of the recurring unit cost and non-recurring design cost. The operational cost is modeled relative to acquisition cost and fuel burn for predominately metal or composites designs. The main contribution of this study is the application of the Genetic-Causal principle to the modeling of cost, helping to understand how conceptual design parameters impact on cost, and linking that to customer requirements and life cycle cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since their introduction in the 1950s, marine outfalls with diffusers have been prone to saline intrusion, a process in which seawater ingresses into the outfall. This can greatly reduce the dilution and subsequent dispersion of wastewater discharged, sometimes resulting in serious deterioration of coastal water quality. Although long aware of the difficulties posed by saline intrusion, engineers still lack satisfactory methods for its prediction and robust design methods for its alleviation. However, with recent developments in numerical methods and computer power, it has been suggested that commercially available computational fluid dynamics (CFD) software may be a useful aid in combating this phenomenon by improving understanding through synthesising likely behaviour. This document reviews current knowledge on saline intrusion and its implications and then outlines a model-scale investigation of the process undertaken at Queen's University Belfast, using both physical and CFD methods. Results are presented for a simple outfall configuration, incorporating several outlets. The features observed agree with general observations from full-scale marine outfalls, and quantify the intricate internal flow mechanisms associated with saline intrusion. The two-dimensional numerical model was found to represent saline intrusion, but in a qualitative manner, not yet adequate for design purposes. Specific areas requiring further development were identified. The ultimate aim is to provide a reliable, practical and cost effective means by which engineers can minimise saline intrusion through optimised outfall design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibrated stone column technique is an economical and environmentally friendly process that treats weak ground to enable it to withstand low to moderate loading conditions. The performance of the treated ground depends on various parameters such as the strengths of the in-situ and backfill materials, and the spacing, length and diameter of the columns. In practice, vibrated stone columns are frequently used for settlement control. Studies have shown that columns can fail by bulging, bending, punching or shearing. These failure mechanisms are examined in this paper. The study involved a series of laboratory model tests on a consolidated clay bed. The tests were carried out using two different materials: (a) transparent material with ‘clay like’ properties, and (b) speswhite kaolin. The tests on the transparent material have, probably for the first time, permitted visual examination of deforming granular columns during loading. They have shown that bulging was significant in long columns, whereas punching was prominent in shorter columns. The presence of the columns also greatly improved the load-carrying capacity of the soft clay bed. However, columns longer than about six times their diameter did not lead to further increases in the load-carrying capacity. This suggests that there is an optimum column length for a given arrangement of stone columns beneath a rigid footing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.