964 resultados para Prise de médicaments
Resumo:
The use of a charged-particle microbeam provides a unique opportunity to control precisely, the number of particles traversing individual cells and the localization of dose within the cell. The accuracy of 'aiming' and of delivering a precise number of particles crucially depends on the design and implementation of the collimation and detection system. This report describes the methods available for collimating and detecting energetic particles in the context of a radiobiological microbeam. The arrangement developed at the Gray Laboratory uses either a 'V'-groove or a thick-walled glass capillary to achieve 2-5 mu m spatial resolution. The particle detection system uses an 18 mu m thick transmission scintillator and photomultiplier tube to detect particles with >99% efficiency.
Resumo:
Charged-particle microbeams provide a unique opportunity to control precisely, the dose to individual cells and the localization of dose within the cell. The Gray Laboratory is now routinely operating a charged-particle microbeam capable of delivering targeted and counted particles to individual cells, at a dose-rate sufficient to permit a number of single-cell assays of radiation damage to be implemented. By this means, it is possible to study a number of important radiobiological processes in ways that cannot be achieved using conventional methods. This report describes the rationale, development and current capabilities of the Gray Laboratory microbeam.
Resumo:
Purpose: To measure hypoxic chemical fixation processes of radiation damage in both isolated plasmid DNA and in GSH-depleted E. coli cells.
Resumo:
Purpose: This short review summarizes the data obtained with various techniques for measuring the yields of double strand breaks (dsb) produced by particle radiations of differing linear energy transfer (LET) in order to obtain relative biological effectiveness (RBE) values.
Resumo:
Many studies have shown that the effectiveness of radiations of varying LET is similar when yields of dsb have been measured, despite large differences in biological response. Recent evidence has suggested however, that current techniques underestimate the yields of dsb. By monitoring the fragmentation of DNA over a wide range of fragment sizes ( 6 Mbp) by pulsed field electrophoresis, RBE values greater than 1.0 for radiations of around 100 keV/mm have been determined. The data provide evidence for the production of correlated breaks produced within cells as particle tracks traverse the nucleus. The highly ordered structure of DNA within mammalian cells may lead to clustering of breaks over distances related to the repeating unit structures of the chromatin. As well as these regionally damaged sites, a major contributor to radiation effectiveness will be the localised clustering of damage in the 1 - 20 bp region. A major effort is required to elucidate the relative importance of these levels of clustering and their importance in biological response.
Resumo:
Purpose: The aim of the work was to compare critically the radiosensitivity of the supercoiled and relaxed forms of a plasmid DNA system commonly used in DNA damage assays.
Resumo:
An important difference between chemical agents that induce oxidative damage in DNA and ionizing radiation is that radiation-induced damage is clustered locally on the DNA, Both modelling and experimental studies have predicted the importance of clustering of lesions induced by ionizing radiation and its dependence on radiation quality. With increasing linear energy transfer, it is predicted that complex lesions will be formed within 1-20 bp regions of the DNA, As well as strand breaks, these sites may contain multiple damaged bases, We have compared the yields of single strand breaks (ssb) and double strand breaks (dsb) along with those produced by treatment of irradiated DNA with the enzyme endonuclease III, which recognizes a number of oxidized pyrimidines in DNA and converts them to strand breaks. Plasmid DNA was irradiated under two different scavenging conditions to test the involvement of OH radicals with either Co-60 gamma-rays or alpha-particles from a Pu-238 source. Under low scavenging conditions (10 mM Tris) gamma-irradiation induced 7.1x10(-7) ssb Gy/bp, which increased 3.7-fold to 2.6 x 10(-6) ssb Gy/bp with endo III treatment. In contrast the yields of dsb increased by 4.2-fold from 1.5 x 10(-8) to 6.3 x 10(-8) dsb Gy/bp, This equates to an additional 2.5% of the endo III-sensitive sites being converted to dsb on enzyme treatment. For alpha-particles this increased to 9%. Given that endo III sensitive sites may only constitute similar to 40% of the base lesions induced in DNA, this suggests that up to 6% of the ssb measured in X- and 22% in alpha-particle-irradiated DNA could have damaged bases associated with them contributing to lesion complexity.
Resumo:
By using a fast reaction technique which employs H2S gas as a fast-reacting chemical repair agent, it is possible to measure the competition kinetics between chemical repair reactions and oxygen fixation reactions in model DNA and cellular systems. In plasmid pBR322 DNA irradiated with electrons, we have compared the oxygen fixation reactions of the free radical precursors that lead to the production of single-strand (SSBs) and double-strand breaks (DSBs). For the oxygen-dependent fixation of radical damage leading to SSBs, a second-order rate constant of 2.3 x 10(8) dm(3) mol(-1) s(-1) was obtained compared to 8.9 x 10(7) dm(3) mol(-1) s(-1) for DSBs. The difference is in general agreement with predictions from a multiple-radical model where the precursor of a DSB originates from two radicals. The fixation of this precursor by oxygen will require both radicals to be fixed for the DSB to be formed, which will have slower kinetics than that of single free-radical precursors of SSBs. (C) 1999 by Radiation Research Society.
Resumo:
Purpose: To determine the yields of cell lethality and micronucleus formation measured immediately after irradiation or at delayed times in primary human fibroblasts exposed to X-rays or alpha-particles.
Resumo:
Purpose: Theoretical modelling techniques are often used to simulate the action of ionizing radiations on cells at the nanometre level, Using monoenergetic vacuum-UV (VUV) radiation to irradiate DNA either dry or humidified, the action spectra for the induction of DNA damage by low energy photons and the role of water and can be studied. These data provide inputs for the theoretical models.
Resumo:
Purpose: To analyse the currently existing methods to infer the extent of cellular DNA damage induced by ionizing radiation when the pulsed field gel electrophoresis (PFGE) technique is used.
Resumo:
Purpose: To measure action spectra for the induction of single- strand breaks (SSB) and double-strand breaks (DSB) in plasmid DNA by low-energy photons and provide estimates for the energy dependence of strand-break formation important for track-structure simulations of DNA damage.
Resumo:
Purpose: To determine whether the non-random distributions of DNA double-strand breaks in cells observed after alpha-particle irradiation are related to the higher-order structure of the chromatin within the nucleus.
Resumo:
Recent evidence suggests that genomic instability, which is an important step in carcinogenesis, may be important in the effectiveness of radiation as a carcinogen, particularly for high-LET radiations. Understanding the biological effects underpinning the risks associated with low doses of densely ionizing radiations is complicated in experimental systems by the Poisson distribution of particles that ran be delivered, In this study, we report an approach to determine the effect of the lowest possible cellular radiation dose of densely ionizing at particles, that of a single particle traversal. Using microbeam technology and an approach for immobilizing human T-lymphocytes, we have measured the effects of single alpha -particle traversals on the surviving progeny of cells. A significant increase in the proportion of aberrant cells is observed 12-13 population doublings after exposure, with a high level of chromatid-type aberrations, indicative of an instability phenotype, These data suggest that instability may be important in situations where even a single particle traverses human cells. (C) 2001 by Radiation Research Society.
Resumo:
Bystander responses underlie some of the current efforts to develop gene therapy approaches for cancer treatment. Similarly, they may have a role in strategies to treat tumours with targeted radioisotopes. In this study we show direct evidence for the production of a radiation-induced bystander response in primary human fibroblasts, We utilize a novel approach of using a charged-particle microbeam, which allows individual cells within a population to be selected and targeted with counted charged particles. Individual primary human fibroblasts within a population of 600-800 cells were targeted with between 1 and 15 helium ions (effectively, alpha -particles). The charged particles were delivered through the centre of the nucleus with an accuracy of +/- 2 mum and a detection and counting efficiency of greater than 99%. When scored 3 days later, even though only a single cell had been targeted, typically an additional 80-100 damaged cells were observed in the surviving population of about 5000 cells. The yield of damaged cells was independent of the number of charged particles delivered to the targeted cell, Similar results of a 2-3-fold increase in the background level of damage present in the population were observed whether 1 or 4 cells were targeted within the dish. Also, when 200 cells within one quadrant of the dish were exposed to radiation, there was a 2-3-fold increase in the damage level in an unexposed quadrant of the dish, This effect was independent of the presence of serum in the culture medium and was only observed when a cell was targeted, but not when only the medium was exposed, confirming that a cell-mediated response is involved. (C) 2001 Cancer Research Campaign.