983 resultados para Pressure Support Ventilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic ethanol Consumption and hypertension are related. In the current study we investigated whether changes in reactivity of the mesenteric arterial bed could account for the increased blood pressure associated with chronic ethanol intake. Changes in reactivity to phenylephrine and acetylcholine were investigated in the perfused mesenteric bed from rats treated with ethanol for 2 or 6 weeks and their age-matched controls. Mild hypertension was observed in chronically ethanol-treated rats. Treatment of rats for 6 weeks induced an increase in the contractile response of endothelium-intact mesenteric bed to phenylephrine, but not denuded rat mesenteric bed. The phenylephrine-induced increase in perfusion pressure was not altered after 2 weeks` treatment with ethanol. Moreover, acetylcholine-induced endothelium-dependent relaxation was reduced by ethanol treatment for 6 weeks, but not 2 weeks. Pre-treatment with indometacin, a cyclooxygenase inhibitor, reduced the maximum effect induced by phenylephrine (E-max) in endothelium-intact mesenteric bed from both control and ethanol-treated rats. No differences in the E-max values for phenylephrine were observed between groups in the presence of indometacin. L-NNA, a nitric oxide (NO) synthase (NOS) inhibitor, increased the E-max for phenylephrine in endothelium-intact mesenteric bed from control rats but not from ethanol-treated rats. Levels of endothelial NOS (eNOS) mRNA were not altered by chronic ethanol consumption. However, chronic ethanol intake strongly reduced eNOS protein levels in the mesenteric bed. This study shows that chronic ethanol consumption increases blood pressure and alters the reactivity of the mesenteric bed. Moreover, the increased vascular response to phenylephrine observed in the mesenteric bed is maintained by two mechanisms: an increased release of endothelial-derived vasoconstrictor prostanoids and a reduced modulatory action of endothelial NO, which seems to be associated with reduced post-transcriptional expression of eNOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a method based on association rule-mining to enhance the diagnosis of medical images (mammograms). It combines low-level features automatically extracted from images and high-level knowledge from specialists to search for patterns. Our method analyzes medical images and automatically generates suggestions of diagnoses employing mining of association rules. The suggestions of diagnosis are used to accelerate the image analysis performed by specialists as well as to provide them an alternative to work on. The proposed method uses two new algorithms, PreSAGe and HiCARe. The PreSAGe algorithm combines, in a single step, feature selection and discretization, and reduces the mining complexity. Experiments performed on PreSAGe show that this algorithm is highly suitable to perform feature selection and discretization in medical images. HiCARe is a new associative classifier. The HiCARe algorithm has an important property that makes it unique: it assigns multiple keywords per image to suggest a diagnosis with high values of accuracy. Our method was applied to real datasets, and the results show high sensitivity (up to 95%) and accuracy (up to 92%), allowing us to claim that the use of association rules is a powerful means to assist in the diagnosing task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous research in Brazil, we found socioeconomic and gender differences in body mass and percent body fat, consistent with a model in which individuals in higher socioeconomic strata, especially women, could achieve a cultural ideal of body size and shape. In this article, using new data, we examine these processes more precisely using measures of cultural consonance. Cultural consonance refers to the degree to which individuals approximate, in their own beliefs and behaviors, the shared prototypes for belief and behavior encoded in cultural models. We have found higher cultural consonance in several domains to be associated with health outcomes. Furthermore, there tends to be a general consistency in cultural consonance across domains. Here we suggest that measures of body composition can be considered indicators of individuals` success in achieving cultural ideals of the body, and that cultural consonance in several domains will be associated with body composition. Using waist circumference as an outcome, smaller waist size was associated with higher cultural consonance in lifestyle (beta = -0.311, P < 0.01) and higher cultural consonance in the consumption of high prestige foods (beta = -0.260, P < 0.01) for women (n = 161), but not for men (n = 106), controlling for age, family income, tobacco use, and dietary intake of protein and carbohydrates. Similar results were obtained using the body mass index and weight as outcomes, while there were no associations with height. These results help to illuminate the cultural mediation of body composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scher, LML, Ferriolli, E, Moriguti, JC, Scher, R, and Lima, NKC. The effect of different volumes of acute resistance exercise on elderly individuals with treated hypertension. J Strength Cond Res 25(4): 1016-1023, 2011-Acute resistance exercise can reduce the blood pressure (BP) of hypertensive subjects. The aim of this study was to evaluate the effect of different volumes of acute low-intensity resistance exercise over the magnitude and the extent of BP changes in treated hypertensive elderly individuals. Sixteen participants (7 men, 9 women), with mean age of 68 6 5 years, performed 3 independent randomized sessions: Control (C: 40 minutes of rest), Exercise 1 (E1: 20 minutes, 1 lap in the circuit), and Exercise 2 (E2: 40 minutes, 2 laps in the circuit) with the intensity of 40% of 1 repetition maximum. Blood pressure was measured before (during 20 minutes) and after each session (every 5 minutes during 60 minutes) using both a mercury sphygmomanometer and a semiautomatic device (Omrom-HEM-431). After that, 24-hour ambulatory blood pressure monitoring was performed (Dyna-MAPA). Blood pressure decreased during the first 60 minutes (systolic: p < 0.01, diastolic: p < 0.05) after all exercise sessions. Only the highest volume session promoted a reduction of mean systolic 24-hour BP and awake BP (p, 0.05) after exercise, with higher diastolic BP during sleep (p, 0.05). Diastolic 24-hour BP and both systolic and diastolic BP during sleep were higher after E1 (p, 0.05). Concluding, acute resistive exercise sessions in a circuit with different volumes reduced BP during the first 60 minutes after exercise in elderly individuals with treated hypertension. However, only the highest volume promoted a reduction of mean 24-hour and awake systolic BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of hypoxic areas occurs during infectious and inflammatory processes and dendritic cells (DCs) are involved in both innate and adaptive immunity in diseased tissues. Our group previously reported that macrophages exposed to hypoxia were infected with the intracellular parasite Leishmania amazonensis, but showed reduced susceptibility to the parasite. This study shows that although hypoxia did not alter human DC viability, it significantly altered phenotypic and functional characteristics. The expression of CD1a, CD80, and CD86 was significantly reduced in DCs exposed to hypoxia, whereas CD11c, CD14, CD123, CD49 and HLA-DR expression remained unaltered in DCs cultured in hypoxia or normoxia. DC secretion of IL-12p70, the bioactive interleukin-12 (IL-12), a cytokine produced in response to inflammatory mediators, was enhanced under hypoxia. In addition, phagocytic activity (Leishmania uptake) was not impaired under hypoxia, although this microenviroment induced infected DCs to reduce parasite survival, consequently controlling the infection rate. All these data support the notion that a hypoxic microenvironment promotes selective pressure on DCs to assume a phenotype characterized by pro-inflammatory and microbial activities in injured or inflamed tissues and contribute to the innate immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylloquinone (vitamin K-1, VK1) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK1 on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK1 (0.5-20 mg kg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK1 were dose-dependent. On the other hand, intravenous injection of VK1 did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N-G-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mg kg(-1)) reduced both the increase and decrease in blood pressure induced by VK1 (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK1. However, VK1-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK1 induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK1 involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that immunological challenges as lipopolysaccharide (LPS) administration increases plasma oxytocin (OT) concentration. Nitric oxide (NO), a free radical gas directly related to the immune system has been implicated in the central modulation of neuroendocrine adaptive responses to immunological stress. This study aimed to test the hypothesis that the NO pathway participates in the control of OT release induced by LPS injection. For this purpose, adult male Wistar rats received bolus intravenous (i.v.) injection of LPS, preceded or not by iv. or intracerebroventricular (i.c.v.) injections of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor. Rats were decapitated after 2, 4 and 6 h of treatment, for measurement of OT by radioimmunoassay. In a separate set of experiments, mean arterial pressure (MAP) and heart rate (HR) were measured every 15 min over 6 h, using a polygraph. These studies revealed that LPS reduced MAP and increased HR at 4 and 6 h post-injection. LPS significantly increased plasma OT concentration at 2 and 4 h post-injection. Pre-treatment with i.c.v. AG further increased plasma OT concentration and attenuated the LPS-induced decrease in MAP, however, i.v. AG failed to show similar effects. Thus, iNOS pathway may activate a central inhibitory control mechanism that attenuates OT secretion during endotoxemic shock. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemoreflex afferent fibers terminate in the nucleus tractus solitarii (NTS), but the specific location of the NTS neurons excited by peripheral chemoreflex activation remains to be characterized. Here, the topographic distribution of chemoreflex sensitive cells at the commissural NTS was evaluated. To reach this goal, Fos-immunoreactive neurons (Fos-ir) were accounted in rostro-caudal levels of the intermediate and caudal commissural NTS, after intermittent chemoreflex activation with intravenous injection of potassium cyanide [KCN (80 mu g/kg) or saline (0.9%, vehicle), one injection every 3 min during 30 min]. In response to intermittent intravenous injections of KCN, a significant increase in the number of Fos-ir neurons was observed specifically in the lateral intermediate commissural NTS [(LI)NTS (82 +/- 9 vs. 174 +/- 16, cell number mean per section)] and lateral caudal commissural NTS [(LI)NTS (71 +/- 9 vs. 199 +/- 18, cell number mean per section)]. To evaluate the influence of baroreceptor-mediated inputs following the increase in blood pressure during intermittent chemoreflex activation, we performed an intermittent activation of the arterial baroreflex by intravenous injection of phenylephrine [1.5 mu g/kg iv (one injection every 3 min during 30 min)]. This procedure induced no change in Fos-ir in (LI)NTS (64 +/- 6 vs. 62 +/- 12, cell number mean per section) or (LC)NTS (56 +/- 15 vs. 77 +/- 12, cell number mean per section). These data support the involvement of the commissural NTS in the processing of peripheral chemoreflex, and provide a detailed characterization of the topographical distribution of activated neurons within this brain region. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABAergic, nitrergic and glutamatergic mechanisms in the PVN on the baseline mean arterial pressure (MAP), heart rate (HR) and on the cardiovascular responses to chemoreflex activation in awake rat were evaluated. Chemoreflex was activated with KCN before and after microinjections into the PVN. Bicuculline into the PVN increased baseline MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (49+/-5 vs 47+/-6 mmHg) or bradicardic (-213+/-23 vs -256+/-42 bpm) responses (n=7). Kynurenic acid into the PVN (n=6) produced no significant changes in the MAP (98+/-3 vs 100+/-3 mmHg), HR (330+/-5 vs 339+/-12 mmHg) or in the pressor (50+/-4 vs 42+/-4 mmHg) and bradicardic (-252+/-4 vs -285+/-16 bpm) responses to chemoreflex. L-NAME into the PVN (n=8) produced increase in the MAP (94+/-3 vs 113+/-5 mmHg) and HR (350+/-9 vs 439+/-18 bpm) but had no effect on the pressor (52+/-5 vs 47+/-6 mmHg) or bradicardic (-253+/-19 vs -320+/-25 bpm) responses to chemoreflex. We conclude that GABA(A) and nitric oxide in the PVN are involved in the maintenance of the baseline MAP but not in the modulation of the responses to chemoreflex. The results also show that Glutamate receptors in the PVN are not involved in maintenance of the baseline MAP, HR or in the cardiovascular responses to chemoreflex in awake rats. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Borges GR, Salgado HC, Silva CA, Rossi MA, Prado CM, Fazan R Jr. Changes in hemodynamic and neurohumoral control cause cardiac damage in one-kidney, one-clip hypertensive mice. Am J Physiol Regul Integr Comp Physiol 295: R1904-R1913, 2008. First published October 1, 2008; doi:10.1152/ajpregu.00107.2008.-Sympathovagal balance and baroreflex control of heart rate (HR) were evaluated during the development (1 and 4 wk) of one-kidney, one-clip (1K1C) hypertension in conscious mice. The development of cardiac hypertrophy and fibrosis was also examined. Overall variability of systolic arterial pressure (AP) and HR in the time domain and baroreflex sensitivity were calculated from basal recordings. Methyl atropine and propranolol allowed the evaluation of the sympathovagal balance to the heart and the intrinsic HR. Staining of renal ANG II in the kidney and plasma renin activity (PRA) were also evaluated. One and four weeks after clipping, the mice were hypertensive and tachycardic, and they exhibited elevated sympathetic and reduced vagal tone. The intrinsic HR was elevated only 1 wk after clipping. Systolic AP variability was elevated, while HR variability and baroreflex sensitivity were reduced 1 and 4 wk after clipping. Renal ANG II staining and PRA were elevated only 1 wk after clipping. Concentric cardiac hypertrophy was observed at 1 and 4 wk, while cardiac fibrosis was observed only at 4 wk after clipping. In conclusion, these data further support previous findings in the literature and provide new features of neurohumoral changes during the development of 1K1C hypertension in mice. In addition, the 1K1C hypertensive model in mice can be an important tool for studies evaluating the role of specific genes relating to dependent and nondependent ANG II hypertension in transgenic mice.