972 resultados para Preimplantation embryo
Resumo:
The eggs from oviparous organisms contain large amounts of vitellus, or yolk, wich are utilized by the growing embryo. Vitellogenesis is the process of vitellus accumulation and involves massive heterosynthetic synthesis of the protein vitellogenin (Vg) and its deposition in the oocyte. This work summarizes data on Vg structure, synthesis, uptake by oocytes and its fate during embryogenesis. The hormonal control of vitellogenesis and its tissue, sex and temporal regulation are also discussed. Where it is available, data on structure and expression of Vg-coding genes are reviewed. Insect vitellogenesis is priorized although other oviparous animal groups outside insects are also treated.
Resumo:
The effect of temperature (20 degrees-35 degrees C) on different stages of Romanomermis iyengari was studied. In embryonic development, the single-cell stage eggs developed into mature eggs in 4.5-6.5 days at 25-35 degrees C but, required 9.5 days at 20 degrees C. Complete hatching occurred in 7 and 9 days after egg-laying at 35 and 30 degrees C, respectively. At 25 and 20 degrees C, 85-96 of the eggs did not hatch even by 30th day. Loss of infectivity and death of the preparasites occurred faster at higher temperatures. The 50 survival durations of preparasites at 20 and 35 degrees C were 105.8 and 10.6 hr respectively. They retained 50 infectivity up to 69.7 and 30.3 hr. The duration of the parasitic phase increased as temperature decreased. Low temperature favoured production of a higher proportion of females which were also larger in size. The maximum time taken for the juveniles to become adults was 14 days at 20 degrees C and the minimum was 9 days at 35 degrees C. Oviposition began earlier at higher temperature than at lower temperature. However, its fecundic period was shorter at 20 degrees C than at 35 degrees C indicating enhanced rate of oviposition at 20 degrees C. Fecundity was adversely affected at 20 degrees C and 35 degrees C. It is shown that the temperature range of 25 degrees-30 degrees C favours optimum development of R. iyengari.
Resumo:
L-Type Ca(2+) and K(ATP) Channels in Pacing-Induced Cardioprotection. AIMS: The L-type Ca(2+) channel, the sarcolemmal (sarcK(ATP)), and mitochondrial K(ATP) (mitoK(ATP)) channels are involved in myocardial preconditioning. We aimed at determining to what extent these channels can also participate in pacing-induced cardioprotection. METHODS: Hearts of 4-day-old chick embryos were paced in ovo during 12 hour using asynchronous intermittent ventricular stimulation at 110% of the intrinsic rate. Sham operated and paced hearts were then submitted in vitro to anoxia (30 minutes) and reoxygenation (60 minutes). These hearts were exposed to L-type Ca(2+) channel agonist Bay-K-8644 (BAY-K) or blocker verapamil, nonselective K(ATP) channel antagonist glibenclamide (GLIB), mitoK(ATP) channel agonist diazoxide (DIAZO), or antagonist 5-hydroxydecanoate. Electrocardiogram, electromechanical delay (EMD) reflecting excitation-contraction (E-C) coupling, and contractility were determined. RESULTS: Under normoxia, heart rate, QT duration, conduction, EMD, and ventricular shortening were similar in sham and paced hearts. During reoxygenation, arrhythmias ceased earlier and ventricular EMD recovered faster in paced hearts than in sham hearts. In sham hearts, BAY-K (but not verapamil), DIAZO (but not 5-hydroxydecanoate) or GLIB accelerated recovery of ventricular EMD, reproducing the pacing-induced protection. By contrast, none of these agents further ameliorated recovery of the paced hearts. CONCLUSION: The protective effect of chronic asynchronous pacing at near physiological rate on ventricular E-C coupling appears to be associated with subtle activation of L-type Ca(2+) channel, inhibition of sarcK(ATP) channel, and/or opening of mitoK(ATP) channel.
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
Las células madre embrionarias (Embryonic Stem Cells; ESC) son células pluripotentes que presentan la capacidad de dividirse indefinidamente a la vez que mantienen la habilidad para diferenciarse a cualquier tipo celular. Aunque de manera rutinaria se derivan a partir de la masa celular interna de embriones en estadio de blastocisto, también pueden derivarse a partir de embriones en estadios precompactacionales y de embriones reconstruidos por procesos de transferencia nuclear. Debido a que durante el desarrollo embrionario temprano, momento en el que se derivan las ESC, tienen lugar profundos cambios de metilación en el genoma, tanto la derivación como el cultivo se consagran como técnicas que pueden alterar los patrones de metilación en genes regulados por impronta genómica. Con el objetivo de analizar la estabilidad epigenética de embriones preimplantacionales y ESC murinas, en este trabajo se ha optimizado un protocolo de anàlisis de los niveles de metilación mediante pirosecuenciación. Para ello se han seleccionado tres genes regulados por impronta genómica (H19/Igf2, Snrpn and Peg3), dos genes relacionados con el mantenimiento de pluripotencia en ESC (Oct4, Nanog y Sox2) y dos genes marcadores de diferenciación temprana (Cdx2 y Gata6). Nuestros resultados muestran que algunos grupos de embriones preimplantacionales presentan una hipo e hipermetilación en las regiones diferencialmente metiladas (Differentially Methylated Regions, DMRs) de los genes Snrpn y Peg3. Además, la línea de ESC analizada presentó anomalías en los tres genes regulados por impronta genómica. No obstante, el hecho de que esta línea fuera inestable a nivel cariotípico no permite establecer una relación entre el cultivo in vitro o la técnica de derivación y la inestabilidad epigenética demostrada. Por todo esto, parece pertinente analizar tanto la integridad epigenética como la estabilidad cromosómica de ESC antes de proceder a realizar ensayos clínicos en humanos.
Resumo:
Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.
Resumo:
Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF). Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.
Resumo:
Trisomy-21 (Down syndrome) is the most frequent chromosomal abnorm- ality but only one third of cases would be detected by amniocentesis based on maternal age alone. Serum screening tests in the early second trimester increase the detec- tion rate to 60-65%, and more recently it was found that such screening was also possible in the first trimester by quantifying a diffe- rent panel of markers. The concen- trations of these placental proteins are strongly dependent on gestatio- nal age; thus control medians must be established and precise dating is essential. Serum chorionic gonado- trophin (HCG) levels were recently found to be increased in IVF preg- nancies compared to spontaneous gestations, leading to a falsely ele- vated trisomy screening risk. The aim of this preliminary study was to find out whether, in the first-trime- ster screening, the markers similarly differed between IVF and spontane- ous pregnancies which would call for the establishment of separate normal medians for IVF patients. We compared 24 pregnancies ob- tained after ovarian stimulation and IVF with six women after thawed embryo transfer (unstimulated cycle) and 63 gestation- and maternal-age matched spontaneously pregnant controls. A single serum was ob- tained between 6 and 16 weeks of gestation and various placental protein levels determined by im- munometric assays. Serum levels of pregnancy-associated plasma protein A (PAPP-A), which is the major marker in the first-trimes- ter screening test, were reduced in IVF pregnancies: after 9 weeks of gestation, multiples of median (MoMs) ranged between 0.23 and 3.58 (logarithmic mean 0.743). For the frozen/thawed transfers, this value was 1.08. In the 9-12 week group containing 6 cases of IVF, three thawed transfers and 25 con- trols, PAPP-A was significantly redu- ced in the stimulated compared to the nonstimulated cycles. In the late first and early second trimester the difference was not significant in our small group but the trend persisted. Pregnancies after IVF will thus show an increased incidence of false positive results in fetal trisomy-21 screening, and special medians should be established for these pati- ents.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.
Resumo:
There is a clinical need to enhance functional recovery of injured peripheral nerves. Local administration of neurotrophic factors (NTFs) after surgical repair has been proposed for this purpose. Little is known, however, on the optimal local dose and dosing frequency of NTFs in a peripheral nerve defect. For increasing our knowledge on biologically relevant local NTFs concentrations and for making available an in vitro assay for assessing the bioactivity of NTFs in connection with implantable localized delivery systems, we developed in this study a bioassay for NTFs, which is based on dorsal root ganglion (DRG) explants from E9 (9 days old) chicken embryos. Axonal elongation and extent of axonal branching was analyzed microscopically after addition of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF), each alone and in combination. GDNF significantly promoted axonal elongation, but only little axonal branching, whereas NGF induced extensive axonal branching with modest axonal elongation. The combination of GDNF and NGF exerted a synergistic effect on the axonal elongation, axonal branching and growth kinetics. GDNF and NGF also enhanced the expression of their respective functional receptors Ret and TrkA on the DRG neurons. This information should be relevant for the development of implants containing NTFs and on drug therapy of damaged peripheral nerves.
Resumo:
PSIP1 (PC4 and SFRS1 interacting protein 1) encodes two splice variants: lens epithelium-derived growth factor or p75 (LEDGF/p75) and p52. PSIP1 gene products were shown to be involved in transcriptional regulation, affecting a plethora of cellular processes, including cell proliferation, cell survival, and stress response. Furthermore, LEDGF/p75 has implications for various diseases and infections, including autoimmunity, leukemia, embryo development, psoriasis, and human immunodeficiency virus integration. Here, we reported the first characterization of the PSIP1 promoter. Using 5' RNA ligase-mediated rapid amplification of cDNA ends, we identified novel transcription start sites in different cell types. Using a luciferase reporter system, we identified regulatory elements controlling the expression of LEDGF/p75 and p52. These include (i) minimal promoters (-112/+59 and +609/+781) that drive the basal expression of LEDGF/p75 and of the shorter splice variant p52, respectively; (ii) a sequence (+319/+397) that may control the ratio of LEDGF/p75 expression to p52 expression; and (iii) a strong enhancer (-320/-207) implicated in the modulation of LEDGF/p75 transcriptional activity. Computational, biochemical, and genetic approaches enabled us to identify the transcription factor Sp1 as a key modulator of the PSIP1 promoter, controlling LEDGF/p75 transcription through two binding sites at -72/-64 and -46/-36. Overall, our results provide initial data concerning LEDGF/p75 promoter regulation, giving new insights to further understand its biological function and opening the door for new therapeutic strategies in which LEDGF/p75 is involved.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Charité - Universitätsmedizin Berlin, Alemanya, entre novembre i desembre del 2007. En aquest treball es presenta el protocol a seguir per a dur a terme el cultiu d’embrions sencers in vitro (Whole Embryo Culture, WEC). Amb aquest protocol es pretén implementar la tècnica del WEC en el laboratori de la Unitat de Toxicologia de la Facultat de Farmàca (UB), seguint la metodologia apresa durant l’estada i deixant per escrit tots els passos seguits i el material i la metodologia concreta de cadascun d’ells. En el WEC es cultiven embrions de rata de 9.5 dies durant 48h en ampolles rotatòries en un medi líquid i amb una fase gasosa controlats. Durant el cultiu, tenen lloc dos processos principals: el plegament de l’embrió i l’organogènesi. Els embrions durant els dos dies que dura el cultiu es pleguen en els plans transversal i sagital, passant d’un embrió pla a un altre de cilíndric en forma de “C”. En aquest període, a més, es produeixen importants processos d’organogènesi com la neurulació, la formació de la cresta neural, dels somites, dels vasos sanguinis - el cor inclòs- i de la sang. Es comencen a formar la placoda nasal, la vesícula oftàlmica, la vesícula òtica, les extremitats superiors i inferiors i la cua. En la memòria adjunta es descriuen amb detall els processos d'aparellament dels animals, preparació del material i del medi de cultiu, el procés d'aïllament del embrions en el dia 9.5, les condicions de cultiu i l'avaluació dels embrions en el dia 11.5. Finalment es presenten resultats d'embrions en situació control amb un correcte desenvolupament i es mostra com, al final de l'estada, es va aconseguir el cultiu d’embrions control amb un desenvolupament correcte i estadísticament sense diferències respecte als diferents paràmetres mesurats en comparació amb els embrions control de la Charité-Universitätsmedizin de Berlin.
Resumo:
The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.
Resumo:
Despite the central role of quantitative PCR (qPCR) in the quantification of mRNA transcripts, most analyses of qPCR data are still delegated to the software that comes with the qPCR apparatus. This is especially true for the handling of the fluorescence baseline. This article shows that baseline estimation errors are directly reflected in the observed PCR efficiency values and are thus propagated exponentially in the estimated starting concentrations as well as 'fold-difference' results. Because of the unknown origin and kinetics of the baseline fluorescence, the fluorescence values monitored in the initial cycles of the PCR reaction cannot be used to estimate a useful baseline value. An algorithm that estimates the baseline by reconstructing the log-linear phase downward from the early plateau phase of the PCR reaction was developed and shown to lead to very reproducible PCR efficiency values. PCR efficiency values were determined per sample by fitting a regression line to a subset of data points in the log-linear phase. The variability, as well as the bias, in qPCR results was significantly reduced when the mean of these PCR efficiencies per amplicon was used in the calculation of an estimate of the starting concentration per sample.