971 resultados para Predictive Mean Squared Efficiency
Resumo:
The (-)-hinokinin display high activity against Trypanosoma cruzi in vitro and in vivo. (-)-Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles were prepared and characterized in order to protect (-)-hinokinin of biological interactions and promote its sustained release for treatment of Chagas disease. The microparticles contain (-)-hinokinin were prepared by the classical method of the emulsion/solvent evaporation. The scanning electron microscopy, light-scattering analyzer were used to study the morphology and particle size, respectively. The encapsulation efficiency was determined, drug release studies were kinetically evaluated, and the trypanocidal effect was evaluated in vivo. (-)-Hinokinin-loaded microparticles obtained showed a mean diameter of 0.862 A mu m with smooth surface and spherical shape. The encapsulation efficiency was 72.46 A +/- 2.92% and developed system maintained drug release with Higuchi kinetics. The preparation method showed to be suitable, since the morphological characteristics, encapsulation efficiency, and in vitro release profile were satisfactory. In vivo assays showed significant reduction of mice parasitaemia after administration of (-)-hinokinin-loaded microparticles. Thus, the developed microparticles seem to be a promising system for sustained release of (-)-hinokinin for treatment of Chagas disease.
Resumo:
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We examined the transmission efficiency of 2 strains of Wolbachia bacteria that cause cytoplasmic incompatibility in field populations of Aedes albopictus by polymerase chain reaction assay. We found mainland and island populations throughout Thailand to be superinfected with group A and B bacteria. Of 320 Wolbachia-positive adult mosquitoes, 97.5% were infected with both groups. Single infected individuals of each Wolbachia group were encountered in nearly equal numbers. We screened 550 offspring from 80 field-collected mothers and found the transmission efficiency of group A Wolbachia to be 96.7% and that of group B Wolbachia to be 99.6%. Mothers that did not transmit both Wolbachia infections to all of their offspring were significantly larger in size than those with perfect transmission fidelity. We discuss our findings in relation to the prospects of the use of Wolbachia as a gene-driving mechanism.
Resumo:
The Coefficient of Variance (mean standard deviation/mean Response time) is a measure of response time variability that corrects for differences in mean Response time (RT) (Segalowitz & Segalowitz, 1993). A positive correlation between decreasing mean RTs and CVs (rCV-RT) has been proposed as an indicator of L2 automaticity and more generally as an index of processing efficiency. The current study evaluates this claim by examining lexical decision performance by individuals from three levels of English proficiency (Intermediate ESL, Advanced ESL and L1 controls) on stimuli from four levels of item familiarity, as defined by frequency of occurrence. A three-phase model of skill development defined by changing rCV-RT.values was tested. Results showed that RTs and CVs systematically decreased as a function of increasing proficiency and frequency levels, with the rCV-RT serving as a stable indicator of individual differences in lexical decision performance. The rCV-RT and automaticity/restructuring account is discussed in light of the findings. The CV is also evaluated as a more general quantitative index of processing efficiency in the L2.
Resumo:
The second edition of An Introduction to Efficiency and Productivity Analysis is designed to be a general introduction for those who wish to study efficiency and productivity analysis. The book provides an accessible, well-written introduction to the four principal methods involved: econometric estimation of average response models; index numbers, data envelopment analysis (DEA); and stochastic frontier analysis (SFA). For each method, a detailed introduction to the basic concepts is presented, numerical examples are provided, and some of the more important extensions to the basic methods are discussed. Of special interest is the systematic use of detailed empirical applications using real-world data throughout the book. In recent years, there have been a number of excellent advance-level books published on performance measurement. This book, however, is the first systematic survey of performance measurement with the express purpose of introducing the field to a wide audience of students, researchers, and practitioners. Indeed, the 2nd Edition maintains its uniqueness: (1) It is a well-written introduction to the field. (2) It outlines, discusses and compares the four principal methods for efficiency and productivity analysis in a well-motivated presentation. (3) It provides detailed advice on computer programs that can be used to implement these performance measurement methods. The book contains computer instructions and output listings for the SHAZAM, LIMDEP, TFPIP, DEAP and FRONTIER computer programs. More extensive listings of data and computer instruction files are available on the book's website: (www.uq.edu.au/economics/cepa/crob2005).
Resumo:
This Toolkit was developed for the Australian dairy processing industry on behalf of Dairy Australia. At the conclusion of the project, industry participants gained exclusive access to a comprehensive Eco-Efficiency Manual, which outlined many of the opportunities available to the industry. Summary fact sheets were also prepared as publicly available resources and these are available for download below
Resumo:
This manual has been developed to help the Australian dairy processing industry increase its competitiveness through increased awareness and uptake of eco-efficiency. The manual seeks to consolidate and build on existing knowledge, accumulated through projects and initiatives that the industry has previously undertaken to improve its use of raw materials and resources and reduce the generation of wastes. Where there is an existing comprehensive report or publication, the manual refers to this for further information. Eco-efficiency is about improving environmental performance to become more efficient and profitable. It is about producing more with less. It involves applying strategies that will not only ensure efficient use of resources and reduction in waste, but will also reduce costs. This chapter outlines the environmental challenges faced by Australian dairy processors. The manual explores opportunities for reducing environmental impacts in relation to water, energy, product yield, solid and liquid waste reduction and chemical use.
Resumo:
Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
Theoretical analyses have shown the radiation use efficiency of maize, soybean, and peanut to increase with a decrease in the level of incident radiation and an increase in the proportion of diffuse radiation. This study compared the growth and radiation use efficiency of Panicum maximum cv. Petrie (green panic) and Bothriochloa insculpta cv. Bisset (creeping bluegrass) beneath shading treatments (birdguard and solarweave shadecloths) with that in full sunlight. A level of incident radiation reduced by 25% under birdguard shadecloth decreased final yield and final leaf area index, but increased canopy leaf nitrogen concentration and radiation use efficiency (19-14%) (compared with the full sun treatment). A similar level of reduced incident radiation under solarweave shadecloth (which provided an increased proportion of diffuse radiation), increased final yield and radiation use efficiency (46-50%). An understanding of the effects of composition of incident radiation on radiation use efficiency of tropical grasses enables more accurate estimation of potential pasture growth in shaded environments. It also has impact upon crop production in glasshouses and greenhouses.
Resumo:
Microencapsulation of lemon oil was undertaken with beta-cyclodextrin using a precipitation method at the five lemon oil to beta-cyclodextrin ratios of 3:97, 6:94, 9:91, 12:88, and 15:85 (w/w) in order to determine the effect of the ratio of lemon oil to beta-cyclodextrin on the inclusion efficiency of beta-cyclodextrin for encapsulating oil volatiles. The retention of lemon oil volatiles reached a maximum at the lemon oil to beta-cyclodextrin ratio of 6:94; however, the maximum inclusion capacity of beta-cyclodextrin and a maximum powder recovery were achieved at the ratio of 12:88, in which the beta-cyclodextrin complex contained 9.68% (w/w) lemon oil. The profile and proportion of selected flavor compounds in the beta-cyclodextrin complex and the starting lemon oil were not significantly different.
Resumo:
The large fat globules that can be present in UHT milk due to inadequate homogenisation cause a cream layer to form that limits the shelf life of UHT milk. Four different particle size measurement techniques were used to measure the size of fat globules in poorly homogenised UHT milk processed in a UHT pilot plant. The thickness of the cream layer that formed during storage was negatively correlated with homogenisation pressure. It was positively correlated with the mass mean diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by laser light scattering using the Malvern Mastersizer. Also, the thickness of the cream layer was positively correlated with the volume mode diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by electrical impedance using the Coulter Counter. The cream layer thickness did not correlate significantly with the Coulter Counter measurements of volume mean diameter, or volume percentages of particles between 2 and 5 mu m or 5 and 10 mu m diameter. Spectroturbidimetry (Emulsion Quality Analyser) and light microscopy analyses were found to be unsuitable for assessing the size of the fat particles. This study suggests that the fat globule size distribution as determined by the electrical impedance method (Coulter Counter) is the most useful for determining the efficiency of homogenisation and therefore for predicting the stability of the fat emulsion in UHT milk during storage.