889 resultados para Porous polyethylene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work is performed the study of the hexane isomers separation with MOFs in order to improve the octane number of gasoline. The studies were performed with MOFs: MIL-125-Amine, MIL-53(Fe)-Cl, MIL-53(Fe)-Br and Fe-TazBz(DMF). It was observed that higher loadings were obtained for high pressure and low temperature. With MOFs like MIL-53(Fe)-Cl and MIL-53(Fe)-Br the components weren’t separated. In MIL-125-Amine hexane isomers were separated according to their boiling point, but the selectivity was small. The best result was obtained with MOF Fe-TazBz(DMF), because of the higher affinity of n-hex with this MOF, the separation from the other isomers was easier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of four field experiments carried out with the objetive of evaluating the feaibility of irrigation by porous capsule method, from 1979 to 1983, at Bebedouro Experiment Station, EMBRAPA-CPATSA, Petrolina, PE, Brazil. The irrigation system consisted of fulcrum of cone shaped porous capsules, interconnected with conduit pipe and installed in the soil at equidistance and 0.10 m deep along contour lines. The hydrostatic pressures studies did not significantly influence the crop yield, but influenced, at 0.10 level, the daily water release from porous unit. The mean yields for watermelon (Citrullus vulgaris Shard), var. Charleston Gray, for muskmelon (Cucumis melo L.) var. Valenciano Amarelo, and for maize (Zea mays L.), var. Centralmex, estimated in ton/2,500 units/ha or in cobs/2,500 units/ha, were 28.5, 10 and 17,500, respectively. The water consumption for watermelon, musk melon and maize was, respectively, 60 mm, 60 mm and 100 mm in a deep sandy yellow-red latosol. The cost of the system was US$ 1.677,41/ha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Polyethylene glycol (PEG) is often considered as the first-line treatment for functional constipation in children. Descurainia sophia (L.) Webb et Berth (D. sophia) is a safe recommended medicine in Iranian folk and Traditional Persian Medicine for the treatment of constipation. Objectives: To clinically compare D. sophia with PEG 4000 (without electrolyte) in pediatric constipation and to assess its efficacy and side effects. Patients and Methods: 120 patients aged 2 - 12 years with constipation for at least 3 months were included in an 8 weeks lasting randomized controlled trial within two parallel-groups. Children received either PEG, 0.4 g/kg/day, or D. sophia seeds, 2 grams (for children aged 2 - 4 years) and 3 grams (for those aged > 4 years) per day. Results: A total of 109 patients completed the study (56 in D. sophia and 53 in PEG group). At the end of the study, 36 (64.3%) patients in D. sophia group and 29 (54.7%) in PEG group were out of Rome III criteria (P = 0.205). Median weekly stool frequency in 0, 1, 2, 3 weeks of the treatment was found to be 2, 5, 5, 5 in D. sophia and 3, 4, 4, 5 in PEG group (P = 0.139, 0.076, 0.844, 0.294), respectively. The number of patients who suffered flatulence was less (5, 8.9%) in D. sophia group as compared to PEG group (6, 11.3%) at the end of the trial (P = 0.461). D. sophia taste was less tolerated. Conclusions: D. sophia is introduced as a cheap and available medication which can be applied as a safe alternative to conventional PEG in the management of pediatric chronic functional constipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers the crystallisation mechanisms of the most common and aggressive salts that generate stress in porous building stones as a result of changing ambient conditions. These mechanisms include the salt crystallisation that result from decreasing relative humidity and changes in temperature and, in hydrated salts, the dissolution of the lower hydrated form and the subsequent precipitation of the hydrated salt. We propose a new methodology for thermodynamic calculations using PHREEQC that includes these crystallisation mechanisms. This approach permits the calculation of the equilibrium relative humidity and the parameterization of the critical relative humidity and crystallisation pressures for the dissolution–precipitation transitions. The influence of other salts on the effectives of salt crystallisation and chemical weathering is also assessed. We review the sodium and magnesium sulphate and sodium chloride systems, in both single and multicomponent solutions, and they are compared to the sodium carbonate and calcium carbonate systems. The variation of crystallisation pressure, the formation of new minerals and the chemical dissolution by the presence of other salts is also evaluated. Results for hydrated salt systems show that high crystallisation pressures are possible as lower hydrated salts dissolve and more hydrated salts precipitate. High stresses may be also produced by decreasing temperature, although it requires that porous materials are wet for long periods of time. The presence of other salts changes the temperature and relative humidity of salt transitions that generates stress rather than reducing the pressure of crystallisation, if any salt has previously precipitated. Several practical conclusions derive from proposed methodology and provide conservators and architects with information on the potential weathering activity of soluble salts. Furthermore, the model calculations might be coupled with projections of future climate to give as improved understanding of the likely changes in the frequency of phase transitions in salts within porous stone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two VPO materials with fibrillar morphology have been prepared by the aid of electrospinning technique. One is a VPO carbon-supported material (VCF200) with fibrous morphology and very high surface area that is stable under oxidizing conditions up to 350C. The other material is a bulk mixed VPO oxide (VPO500) with fibrous structure obtained after optimizing the calcination of the carbon support in VCF200. Despite it is a bulk oxide material, this material exhibits a high surface area (> 60 m2/g). The redox behavior of both samples was monitored by in situ Raman spectroscopy under oxidation/reduction cycles. For the dehydrated supported sample (VCF200), the pyrophosphate phase (VO)2P2O7 (Raman ~930 cm-1) is detected, which has been described as the active phase (see Figure (a) below). This phase is quite stable since it does not disappear upon subsequent oxidation/reduction cycles. Under reduction conditions at 125C, in consecutive cycles, additional Raman bands appear at ~1090 cm-1 that are characteristic of the αII-VOPO4 phase. On the other hand, the bulk phases show a reversible behavior under redox cycles (Figure (b)). Under reducing conditions, a Raman band appears at ~980 cm-1 (β-VPO phase), whereas under oxidation conditions some segregation to VOx oxides occurs. Nevertheless, this segregation is reversible and the β-VPO phase forms again under reducing conditions. Thus, these results demonstrate that the active VPO phases of these fibrous catalysts are quite stable, and that their structure is reversible under several redox cycles, which make them suitable as oxidation catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene-based nanomaterials are a kind of new technological materials with high interest for physicists, chemists and materials scientists. Graphene is a two-dimensional (2-D) sheet of carbon atoms in a hexagonal configuration with atoms bonded by sp2 bonds. These bonds and this electron configuration provides the extraordinary properties of graphene, such as very large surface area, a tunable band gap, high mechanical strength and high elasticity and thermal conductivity [1]. Graphene has also been investigated for preparation of composites with various semiconductors like TiO2, ZnO, CdS aiming at enhanced photocatalytic activity for their use for photochemical reaction as water splitting or CO2 to methanol conversion [2-3]. In this communication, the synthesis of porous graphene@TiO2 obtained from a powder graphite recycled, supplied by ECOPIBA, is presented. This graphite was exfoliated, using a nonionic surfactant (Triton X-100) and sonication. Titanium(IV) isopropoxide was used as TiO2 source. After removing the surfactant with a solution HCl/n-propanol, a porous solid is obtained with a specific area of 358 m2g-1. The solid was characterized by XRD, FTIR, XPS, EDX and TEM. Figure 1 shows the graphene 2D layer bonded with nanoparticles of TiO2. When a water suspension of this material is exposed with UV-vis radiation, water splitting reaction is carried out and H2/O2 bubbles are observed (Figure 2)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hafnocene catalyst combined with methylaluminoxane (MAO) has been used as catalytic complex for the preparation of a set of polyethylene homopolymers by in situ polymerization under homogenous conditions and of different nanocomposites with mesoporous SBA- 15 particles, the latter playing the dual role of catalyst support and nanofiller. Distinct immobilization approaches have been explored for obtainment of these nanocomposites. Moreover, catalytic features, thermal stability, melting and crystallization transitions and mechanical behavior have been evaluated for those materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multiscale model bridging length and time scales from molecular to continuum levels with the objective of predicting the yield behavior of amorphous glassy polyethylene (PE). Constitutive pa- rameters are obtained from molecular dynamics (MD) simulations, decreasing the requirement for ad- hoc experiments. Consequently, we achieve: (1) the identification of multisurface yield functions; (2) the high strain rate involved in MD simulations is upscaled to continuum via quasi-static simulations. Validation demonstrates that the entire multisurface yield functions can be scaled to quasi-static rates where the yield stresses are possibly predicted by a proposed scaling law; (3) a hierarchical multiscale model is constructed to predict temperature and strain rate dependent yield strength of the PE.