983 resultados para Pointers of fecal pollution
Resumo:
In recent years, freshwater fish farmers have come under increasing pressure from the Water Authorities to control the quality of their farm effluents. This project aimed to investigate methods of treating aquacultural effluent in an efficient and cost-effective manner, and to incorporate the knowledge gained into an Expert System which could then be used in an advice service to farmers. From the results of this research it was established that sedimentation and the use of low pollution diets are the only cost effective methods of controlling the quality of fish farm effluents. Settlement has been extensively investigated and it was found that the removal of suspended solids in a settlement pond is only likely to be effective if the inlet solids concentration is in excess of 8 mg/litre. The probability of good settlement can be enhanced by keeping the ratio of length/retention time (a form of mean fluid velocity) below 4.0 metres/minute. The removal of BOD requires inlet solids concentrations in excess of 20 mg/litre to be effective, and this is seldom attained on commercial fish farms. Settlement, generally, does not remove appreciable quantities of ammonia from effluents, but algae can absorb ammonia by nutrient uptake under certain conditions. The use of low pollution, high performance diets gives pollutant yields which are low when compared with published figures obtained by many previous workers. Two Expert Systems were constructed, both of which diagnose possible causes of poor effluent quality on fish farms and suggest solutions. The first system uses knowledge gained from a literature review and the second employs the knowledge obtained from this project's experimental work. Consent details for over 100 fish farms were obtained from the public registers kept by the Water Authorities. Large variations in policy from one Authority to the next were found. These data have been compiled in a computer file for ease of comparison.
Resumo:
The aim of this article is to draw attention to calculations on the environmental effects of agriculture and to the definition of marginal agricultural yield. When calculating the environmental impacts of agricultural activities, the real environmental load generated by agriculture is not revealed properly through ecological footprint indicators, as the type of agricultural farming (thus the nature of the pollution it creates) is not incorporated in the calculation. It is commonly known that extensive farming uses relatively small amounts of labor and capital. It produces a lower yield per unit of land and thus requires more land than intensive farming practices to produce similar yields, so it has a larger crop and grazing footprint. However, intensive farms, to achieve higher yields, apply fertilizers, insecticides, herbicides, etc., and cultivation and harvesting are often mechanized. In this study, the focus is on highlighting the differences in the environmental impacts of extensive and intensive farming practices through a statistical analysis of the factors determining agricultural yield. A marginal function is constructed for the relation between chemical fertilizer use and yield per unit fertilizer input. Furthermore, a proposal is presented for how calculation of the yield factor could possibly be improved. The yield factor used in the calculation of biocapacity is not the marginal yield for a given area, but is calculated from the real and actual yields, and this way biocapacity and the ecological footprint for cropland are equivalent. Calculations for cropland biocapacity do not show the area needed for sustainable production, but rather the actual land area used for agricultural production. The proposal the authors present is a modification of the yield factor and also the changed biocapacity is calculated. The results of statistical analyses reveal the need for a clarification of the methodology for calculating marginal yield, which could clearly contribute to assessing the real environmental impacts of agriculture.
Resumo:
The aim of this article is to draw attention to calculations on the environmental effects of agriculture and to the definition of marginal agricultural yield. When calculating the environmental impacts of agricultural activities, the real environmental load generated by agriculture is not revealed properly through ecological footprint indicators, as the type of agricultural farming (thus the nature of the pollution it creates) is not incorporated in the calculation. It is commonly known that extensive farming uses relatively small amounts of labor and capital. It produces a lower yield per unit of land and thus requires more land than intensive farming practices to produce similar yields, so it has a larger crop and grazing footprint. However, intensive farms, to achieve higher yields, apply fertilizers, insecticides, herbicides, etc., and cultivation and harvesting are often mechanized. In this study, the focus is on highlighting the differences in the environmental impacts of extensive and intensive farming practices through a statistical analysis of the factors determining agricultural yield. A marginal function is constructed for the relation between chemical fertilizer use and yield per unit fertilizer input. Furthermore, a proposal is presented for how calculation of the yield factor could possibly be improved. The yield factor used in the calculation of biocapacity is not the marginal yield for a given area, but is calculated from the real and actual yields, and this way biocapacity and the ecological footprint for cropland are equivalent. Calculations for cropland biocapacity do not show the area needed for sustainable production, but rather the actual land area used for agricultural production. The proposal the authors present is a modification of the yield factor and also the changed biocapacity is calculated. The results of statistical analyses reveal the need for a clarification of the methodology for calculating marginal yield, which could clearly contribute to assessing the real environmental impacts of agriculture.
Resumo:
Objectionable odors remain at the top of air pollution complaints in urban areas such as Broward County that is subject to increasing residential and industrial developments. The odor complaints in Broward County escalated by 150 percent for the 2001 to 2004 period although the population increased by only 6 percent. It is estimated that in 2010 the population will increase to 2.5 million. Relying solely on enforcing the local odor ordinance is evidently not sufficient to manage the escalating odor complaint trends. An alternate approach similar to odor management plans (OMPs) that are successful in managing major malodor sources such as animal farms is required. ^ This study aims to develop and determine the feasibility of implementing a comprehensive odor management plan (COMP) for the entire Broward County. Unlike existing OMPs for single sources where the receptors (i.e. the complainants) are located beyond the boundary of the source, the COMP addresses a complex model of multiple sources and receptors coexisting within the boundary of the entire county. Each receptor is potentially subjected to malodor emissions from multiple sources within the county. Also, the quantity and quality of the source/receptor variables are continuously changing. ^ The results of this study show that it is feasible to develop a COMP that adopts a systematic procedure to: (1) Generate maps of existing odor complaint areas and malodor sources, (2) Identify potential odor sources (target sources) responsible for existing odor complaints, (3) Identify possible odor control strategies for target sources, (4) Determine the criteria for implementing odor control strategies, (5) Develop an odor complaint response protocol, and (6) Conduct odor impact analyses for new sources to prevent future odor related issues. Geographic Information System (GIS) is used to identify existing complaint areas. A COMP software that incorporates existing United States Environmental Protection Agency (EPA) air dispersion software is developed to determine the target sources, predict the likelihood of new complaints, and conduct odor impact analysis. The odor response protocol requires pre-planning field investigations and conducting surveys to optimize the local agency available resources while protecting the citizen's welfare, as required by the Clean Air Act. ^
Resumo:
This study examined how the themes of environmental sustainability are evident in the national, state and local standards that guide k–12 science curriculum. The study applied the principles of content analysis within the framework of an ecological paradigm. In education, an ecological paradigm focuses on students' use of a holistic lens to view and understand material. The intent of this study was to analyze the seventh grade science content standards at the national, state, and local textbook levels to determine how and the extent to which each of the five themes of environmental sustainability are presented in the language of each text. The themes are: (a) Climate Change Indicators, (b) Biodiversity, (c) Human Population Density, (d) Impact and Presence of Environmental Pollution, (e) Earth as a Closed System. The research study offers practical insight on using a method of content analysis to locate keywords of environmental sustainability in the three texts and determine if the context of each term relates to this ecological paradigm. Using a concordance program, the researcher identified the frequency and context of each vocabulary item associated with these themes. Nine chi squares were run to determine if there were differences in content between the national and state standards and the textbook. Within each level chi squares were also run to determine if there were differences between the appearance of content knowledge and skill words. Results indicate that there is a lack of agreement between levels that is significant p < .01. A discussion of these results in relation to curriculum development and standardized assessments followed. The study found that at the national and state levels, there is a lack of articulation of the goals of environmental sustainability or an ecological paradigm. With respect to the science textbook, a greater number of keywords were present; however, the context of many of these keywords did not align with the discourse of an ecological paradigm. Further, the environmental sustainability themes present in the textbook were limited to the last four chapters of the text. Additional research is recommended to determine whether this situation also exists in other settings.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
Measurements of tree heights and crown sizes are essential in long-term monitoring of spatially distributed forests to assess the health of forests over time. In Switzerland, in 1994 and 1997, more than 4'500 trees have been recorded in a 8x8 km plot within the Sanasilva Inventory, which comprises the Swiss Level I sites of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests' (ICP Forests). Tree heights and crown sizes were measured for the dominant and co-dominant trees (n = 1,723), resulting in a data set from 171 plots in Switzerland, spreading over a broad range of climatic gradient and forest characteristics (species recorded = 20). Average tree height was 22.1 m, average DBH 34.6 cm and crown diameter 6.5 m. The data set presented here is open to use and shall foster research in allometric equation modelling.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
Aerial observations of light pollution can fill an important gap between ground based surveys and nighttime satellite data. Terrestrially bound surveys are labor intensive and are generally limited to a small spatial extent, and while existing satellite data cover the whole world, they are limited to coarse resolution. This paper describes the production of a high resolution (1 m) mosaic image of the city of Berlin, Germany at night. The dataset is spatially analyzed to identify themajor sources of light pollution in the city based on urban land use data. An area-independent 'brightness factor' is introduced that allows direct comparison of the light emission from differently sized land use classes, and the percentage area with values above average brightness is calculated for each class. Using this methodology, lighting associated with streets has been found to be the dominant source of zenith directed light pollution (31.6%), although other land use classes have much higher average brightness. These results are compared with other urban light pollution quantification studies. The minimum resolution required for an analysis of this type is found to be near 10 m. Future applications of high resolution datasets such as this one could include: studies of the efficacy of light pollution mitigation measures, improved light pollution simulations, economic and energy use, the relationship between artificial light and ecological parameters (e.g. circadian rhythm, fitness, mate selection, species distributions, migration barriers and seasonal behavior), or the management of nightscapes. To encourage further scientific inquiry, the mosaic data is freely available at Pangaea.
Resumo:
Materials from different spheres of the Earth are ultimately delivered to bottom sediments, which serve as a natural recorder of the functioning of other spheres and originate as a result of the accumulation of their substances. Sedimentary material and species of river-transported elements are subjected to dramatic reworking in marginal filters, where river and sea waters are mixed. These processes are most important for the Caspian Sea, where runoffs of rivers (especially the Volga River) and the intense development and transportation of hydrocarbon fuel by tankers and pipelines (related to the coastal petroleum industry in the Sumgait and Baku ports, Apsheron Peninsula) are potential sources of hydrocarbon pollution. Previously obtained data showed that the total content of hydrocarbon fraction (i.e., the sum of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH)) in bottom sediments varied within 29-1820 µg/g. The content of petroleum hydrocarbons in the northeastern Caspian region varied from 0.052 to 34.09 µg/g with the maximum content in the Tengiz field. The content of six polyarenes in the Volga delta sediments was no more than 40 ng/g. To determine the recent HC pollution of bottom sediments and trends in the functioning of the Volga marginal filter, in summer of 2003 and 2004 we analyzed bottom sediments (58 samples) in the river waterway; Kirovsk channel; Bakhtemir and Ikryanoe branches; tributaries of the Kizan, Chagan, and other rivers; and the Caspian seashore.
Resumo:
Concentrations of Cd, Pb, Zn, Cu, Co, Ni, Fe, and Al203, water content, the amounts of organic carbon, the ratio of 13C/12C and the 14C-activity of the organic fraction were determined with sediment depth from a 34 cm long box-core from the Bornholm Basin (Baltic Sea). The average sedimentation rate was 2.4 mm/yr. The upper portion of the core contained increasing amounts of 14C-inactive organic carbon, and above 3 cm depth, man-made 14C from atomic bomb tests. The concentrations of the heavy metals Cd, Pb, Zn, and Cu increase strongly towards the surface, while other metals, as Fe, Ni and Co remain almost unchanged. This phenomenon is attributed to anthropogenic influences. A comparison of the Kieler Bucht, the Bornholm and the Gotland Basins shows that today the anthropogenic addition of Zn is about 100 mg/m**2 yr in all three basins. The beginning of this excess of Zn, however, is delayed by about 20 years in, the Bornholm Basin and by about 40 years in the Gotland Basin. It is suggested that SW-NE transport of these anthropogenically mobilized metals may be related to periodic bottom water renewal in the Baltic Sea sedimentary basins.
Resumo:
The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska, Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (d15N, d13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted d15N and d13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan and Canadian Arctic signatures were intermediate. Between-subpopulation dietary differences predominated over interannual, seasonal, sex, or age variation. Among various brominated and chlorinated contaminants, diet signatures significantly explained variation in adipose levels of polybrominated diphenyl ether (PBDE) flame retardants (14-15%) and legacy PCBs (18-21%). However, dietary influence was contaminant class-specific, since only low or nonsignificant proportions of variation in organochlorine pesticide (e.g., chlordane) levels were explained by diet. Hudson Bay diet signatures were associated with lower PCB and PBDE levels, whereas East Greenland and Svalbard signatures were associated with higher levels. Understanding diet/food web factors is important to accurately interpret contaminant trends, particularly in a changing Arctic.
Resumo:
Anthropogenically driven environmental changes affect our planet at an unprecedented scale, and are considered to be a key threat to biodiversity. According to the World Health Organisation, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognised as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems or by focusing on certain taxa. Given that more than two thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual’s development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant.
Resumo:
In captive common marmoset groups, the reproductive inhibition observed in subordinate female seems to be a result of olfactory, visual and behavioral cues from the dominant female. However, few studies have examined the relationship among adult males living in the same social group. These studies have shown that reproductive failure among peer males seems to be based on hormonal and behavioral mechanisms. New insights on sexual strategies in primates have been shown using fecal steroids, but so far no information is available for common marmoset males. In the present study, we evaluated the influence of light-dark cycle, age and reproductive condition on the profile of fecal androgens in males living in the same family group. Feces were collected from six fathers and six sons for androgen determination during the light phase of the 24-h cycle for eight days randomly distributed over a 4-week period. Androgen levels were determined by enzyme immunoassay technique. Adult sons showed higher androgen levels (166.97 ± 22.95 ng/g) than fathers (80.69 ± 44.38 ng/g) and juveniles (49.06 ± 23.15 ng/g; P < 0.05). No diurnal variation (P > 0.05) in fecal androgen profile was observed in adults or juveniles. No indication of androgen-mediated social competition between fathers and adult sons was demonstrable. These results provide basic information on fecal androgen profile useful to investigate the socioendocrinology of free-ranging common marmoset males and verify that, in contrast to daughters, the reproductive suppression of sons is not based on physiological inhibition of their gonads
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06