859 resultados para Point-of-care systems
Resumo:
This paper presents the results of feasibility study of a novel concept of power system on-line collaborative voltage stability control. The proposal of the on-line collaboration between power system controllers is to enhance their overall performance and efficiency to cope with the increasing operational uncertainty of modern power systems. In the paper, the framework of proposed on-line collaborative voltage stability control is firstly presented, which is based on the deployment of multi-agent systems and real-time communication for on-line collaborative control. Then two of the most important issues in implementing the proposed on-line collaborative voltage stability control are addressed: (1) Error-tolerant communication protocol for fast information exchange among multiple intelligent agents; (2) Deployment of multi-agent systems by using graph theory to implement power system post-emergency control. In the paper, the proposed on-line collaborative voltage stability control is tested in the example 10-machine 39-node New England power system. Results of feasibility study from simulation are given considering the low-probability power system cascading faults.
Resumo:
We introduce and characterise time operators for unilateral shifts and exact endomorphisms. The associated shift representation of evolution is related to the spectral representation by a generalized Fourier transform. We illustrate the results for a simple exact system, namely the Renyi map.
Resumo:
This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.
Resumo:
CO hydrogenation is used as a model system to understand why multiphase catalysts are chemically important in heterogeneous catalysis. By including both adsorption and subsequent surface reactions, kinetic equations are derived with two fundamental properties, the chemisorption energies of C and O (Delta H-C and Delta H-O, respectively). By plotting the activity against Delta H-C and Delta H-O, a 3-D volcano surface is obtained. Because of the constraint between Delta H-C and Delta H-O on monophase systems, a maximum can be achieved. However, if multiphase systems are used, such a constraint can be released and the global maximum may be achieved.
Resumo:
Modem society depends on complex agro-ecological and trading systems to provide food for urban residents, yet there are few tools available to assess whether these systems are vulnerable to future disturbances. We propose a preliminary framework to assess the vulnerability of food systems to future shocks based on landscape ecology's 'Panarchy Framework'. According to Panarchy, ecosystem vulnerability is determined by three generic characteristics: (1) the wealth available in the system, (2) how connected the system is, and (3) how much diversity exists in the system. In this framework, wealthy, non-diverse, tightly connected systems are highly vulnerable. The wealth of food systems can be measured using the approach pioneered by development economists to assess how poverty affects food security. Diversity can be measured using the tools investors use to measure the diversity of investment portfolios to assess financial risk. The connectivity of a system can be evaluated with the tools chemists use to assess the pathways chemicals use to flow through the environment. This approach can lead to better tools for creating policy designed to reduce vulnerability, and can help urban or regional planners identify where food systems are vulnerable to shocks and disturbances that may occur in the future. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The recent detection of extra-solar planets and the increasing ability of modern instruments to image discs around young stars has brought a renewed interest in the formation of solar systems. In this article, I shall briefly review what we know about extra-solar planets and the physical structure of protostellar discs. One of the most powerful means of studying these disc systems is to observe the rotational line emission from molecules which can give information on physics and dynamics. At present, the observations are relatively crude but future instruments should be able to resolve molecular structures in the disc around nearby stars. As a prelude to these observations, I discuss some conceptually simple, although numerically challenging, models of the physical and chemical processes involved in determining the molecular distributions.
Resumo:
We discuss how common problems arising with multi/many core distributed architectures can he effectively handled through co-design of parallel/distributed programming abstractions and of autonomic management of non-functional concerns. In particular, we demonstrate how restricted patterns (or skeletons) may be efficiently managed by rule-based autonomic managers. We discuss the basic principles underlying pattern+manager co-design, current implementations inspired by this approach and some result achieved with proof-or-concept, prototype.