982 resultados para Platelet - Rich plasma
Resumo:
Project: Serum samples may not be appropriate to assess lead (Pb) concentrations because they may contain artificially higher Pb concentrations compared with those measured in plasma samples. Here, we compared Pb concentrations in serum versus heparin plasma separated from blood collected with or without vacuum. We have also examined the effects of sample standing time on Pb concentrations measured in serum, heparin plasma, and EDTA plasma. Procedure: We studied plasma and serum samples from twelve healthy subjects. Blood samples were collected via venous drainage phlebotomy with and without vacuum into trace metal free tubes containing no anticoagulants (serum), or lithium heparin, or EDTA (to obtain plasma). Variable sample standing times (0, 5, and 30 min) prior to centrifugation were allowed. Plasma and serum Pb and iron concentrations were determined by inductively coupled plasma mass spectrometry. Plasma and serum cell-free hemoglobin concentrations were measured. Results: Pb concentrations in serum and in heparin plasma from blood samples collected with or without vacuum were similar and not associated with significant changes in iron or hemoglobin concentrations. The sample standing time (up to 30 min) did not affect Pb concentrations in serum or in heparin plasma, which were approximately 50% lower than those found in EDTA plasma. Conclusions: Serum or heparin plasma separated from blood samples collected via venous phlebotomy with or without vacuum are appropriate medium to assess Pb concentrations, independently of the sample standing time. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Background: The diagnosis of acute pulmonary thromboembolism (APT) and its severity is challenging. No previous study has examined whether there is a linear relation between plasma DNA concentrations and the severity of APT. We examined this hypothesis in anesthetized dogs. We also examined the changes in plasma DNA concentrations in microspheres lung embolization and whether the therapy of APT with nitrite could modify APT-induced changes in plasma DNA concentrations. In vitro DNA release from blood clots was also studied. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. A group of dogs received 300 pm microspheres into the inferior vena cava to produce similar pulmonary hypertension. Another group of dogs received 6.75 mu mol/kg nitrite after APT with blood clots of 5 ml/kg. Hemodynamic evaluations were carried out for 120 min. DNA was extracted from plasma samples using QIAamp DNA Blood Mini Kit and quantified using Quant-iT (TM) PicoGreen (R) dsDNA detection kit at baseline and 120 min after APT. Results: APT produced dose-dependent increases in plasma DNA concentrations. which correlated positively with pulmonary vascular resistance (P=0.002, r=0.897) and with mean pulmonary arterial pressure (P=0.006, r=0.856). Conversely, lung embolization with microspheres produced no significant changes in plasma DNA concentrations. While nitrite attenuated APT-induced pulmonary hypertension, it produced no changes in plasma DNA concentrations. Blood clots released dose-dependent amounts of DNA in vitro. Conclusions: Cell-free DNA concentrations increase in proportion to the severity of APT, probably as a result of increasing amounts of thrombi obstructing the pulmonary vessels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Nitric oxide (NO) is a major regulator of cardiovascular homeostasis and has anti-atherogenic properties. Reduced NO formation is associated with endothelial dysfunction and with cardiovascular risk factors. Although NO downregulates the expression and activity of the pro-atherogenic enzyme matrix metalloproteinase-9 (MMP-9), no previous clinical study has examined whether endogenous NO formation is inversely associated with the circulating levels of pro-MMP-9, which are associated with cardiovascular events. We examined this hypothesis in 175 healthy male subjects who were non-smokers. Methods: To assess NO bioavailability, the plasma concentrations of nitrite, nitrate, and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Pro-MMP-9 and pro-MMP-2 levels were measured in plasma samples by gelatin zymography. Results: We found significant negative correlations between pro-MMP-9 levels and plasma nitrite (P=0.035, rs=-0.159), nitrate (P=0.040, rs=-0.158), and cGMP (P=0.011, rs=-0.189) concentrations. However, no significant correlations were found between pro-MMP-2 levels and the plasma concentrations of markers of NO bioavailability (all P>0.05). Conclusions: There is an inverse relationship between markers of NO formation and plasma MMP-9 levels. This finding may shed some light on the possible mechanisms involved in the increased cardiovascular risk of apparently healthy subjects with low NO bioavailability or high circulating levels of pro-MMP-9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
Resumo:
The Ras GTPases operate as molecular switches that link extracellular stimuli with a diverse range of biological outcomes. Although many studies have concentrated on the protein-protein interactions within the complex signaling cascades regulated by Ras, it is becoming clear that the spatial orientation of different Ras isoforms within the plasma membrane is also critical for their function. H-Ras, N-Ras and K-Ras use different membrane anchors to attach to the plasma membrane. Recently it has been shown that these anchors also act as trafficking signals that direct palmitoylated H-Ras and N-Ras through the exocytic pathway to the cell surface but divert polybasic K-Ras around the Golgi to the plasma membrane via an as yet-unidentified-route. Once at the plasma membrane, H-Ras and :K-Ras operate in different microdomains. K-Ras is localized predominantly to the disordered plasma membrane, whereas H-Ras exists in a GTP-regulated equilibrium between disordered plasma membrane and cholesterol-rich lipid rafts. These observations provide a likely explanation for the increasing number of biological differences being identified between the otherwise highly homologous Ras isoforms and raise interesting questions about the role membrane microlocalization plays in determining the interactions of Ras with its effecters and exchange factors.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.
Resumo:
Leucine-rich repeats (LRRs) are 20-29-residue sequence motifs present in a number of proteins with diverse functions. The primary function of these motifs appears to be to provide a versatile structural framework for the formation of protein-protein interactions. The past two years have seen an explosion of new structural information on proteins with LRRs. The new structures represent different LRR subfamilies and proteins with diverse functions, including GTPase-activating protein rna 1 p from the ribonuclease-inhibitor-like subfamily; spliceosomal protein U2A', Rab geranylgeranyltransferase, internalin B, dynein light chain 1 and nuclear export protein TAP from the SDS22-like subfamily; Skp2 from the cysteine-containing subfamily; and YopM from the bacterial subfamily. The new structural information has increased our understanding of the structural determinants of LRR proteins and our ability to model such proteins with unknown structures, and has shed new light on how these proteins participate in protein-protein interactions.
Resumo:
The oxidation of two fluorinated polyimides containing phenylphosphine oxide units, TOR-RC and TOR-RC ODPA, have been studied at 300 K for treatment by a water plasma and gamma -radiolysis in air. The changes in the O 1s/C 1s ratios obtained from x-ray photoelectron spectroscopy (XPS) analysis showed that for exposure to the water plasma the ratio increases at short exposure times and then levels to a constant value. Evidence for the formation of phosphate species was also obtained from the XPS analyses. Similar observations were made for gamma -radiolysis of the polymers in air. The polymers containing phenylphosphine oxide were found to be more resistant to oxidation in the water plasma than Kapton(R). Radiolysis of the polymers in air to high doses were also accompanied by a red shift in the visible absorption spectra.
Resumo:
The surface oxidation of two polyimides containing fluorinated phenylphosphine oxide units, TOR-RC and TOR-RC ODPA, have been studied by (XPS) spectroscopy following gamma -radiolysis under vacuum or in air and subsequent treatment in a water plasma. The changes in the O 1s/C 1s ratios obtained from (XPS) analysis showed that on exposure to the water plasma the ratio increases and then levels to a constant value which is similar to that found for exposure to the plasma without prior gamma -radiation treatment. Evidence for the formation of phosphate species was also obtained from the (XPS) analyses. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Purpose: This study examined the relationship between muscle glutamine, muscle glycogen, and plasma glutamine concentrations over 3 d of high-intensity exercise during which dietary carbohydrate (CHO) intake varied. Methods: Five endurance-trained men completed two exercise trials in randomized order, over a 14-d period. Each trial required subjects to perform 50 min of high-intensity continuous and interval exercise on three consecutive days while consuming a diet that provided 45% of the energy as CHO or a diet in which CHO provided 70% of the total energy. Four days of inactivity and consumption of a 55% CHO diet separated the two randomized trials. Menus and food were provided for the subjects and all food and drink consumed were weighed and recorded for later analysis. Before exercise on the first day of each trial, at the start of exercise on day 3 and on completion of exercise on day 3, muscle was biopsied from the vastus lateralis for the analysis of glutamine and glycogen concentrations. Venous blood was sampled before and twice after exercise on each day for the analysis of plasma glutamine and cortisol concentrations. Results: Mean plasma glutamine concentration was significantly higher during the 70% CHO exercise trial when compared with the 45% CHO trial (P < 0.05). Glycogen decreased by the same magnitude during both trials and there was no relationship between changes in plasma glutamine and changes in muscle glycogen concentration. Muscle glutamine concentration did not change in either trial. Conclusions: These data suggest that the influence of carbohydrate intake upon the concentration of plasma glutamine is not mediated through the concentration of intramuscular glycogen.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.