1000 resultados para Plasma radiation.
Resumo:
Au cours des deux dernières décennies, la technique d'imagerie arthro-scanner a bénéficié de nombreux progrès technologiques et représente aujourd'hui une excellente alternative à l'imagerie par résonance magnétique (IRM) et / ou arthro-IRM dans l'évaluation des pathologies de la hanche. Cependant, elle reste limitée par l'exposition aux rayonnements ionisants importante. Les techniques de reconstruction itérative (IR) ont récemment été mis en oeuvre avec succès en imagerie ; la littérature montre que l'utilisation ces dernières contribue à réduire la dose d'environ 40 à 55%, comparativement aux protocoles courants utilisant la rétroprojection filtrée (FBP), en scanner de rachis. A notre connaissance, l'utilisation de techniques IR en arthro-scanner de hanche n'a pas été évaluée jusqu'à présent. Le but de notre étude était d'évaluer l'impact de la technique ASIR (GE Healthcare) sur la qualité de l'image objective et subjective en arthro-scanner de hanche, et d'évaluer son potentiel en terme de réduction de dose. Pour cela, trente sept patients examinés par arthro-scanner de hanche ont été randomisés en trois groupes : dose standard (CTDIvol = 38,4 mGy) et deux groupes de dose réduite (CTDIvol = 24,6 ou 15,4 mGy). Les images ont été reconstruites en rétroprojection filtrée (FBP) puis en appliquant différents pourcentages croissants d'ASIR (30, 50, 70 et 90%). Le bruit et le rapport contraste sur bruit (CNR) ont été mesurés. Deux radiologues spécialisés en imagerie musculo-squelettique ont évalué de manière indépendante la qualité de l'image au niveau de plusieurs structures anatomiques en utilisant une échelle de quatre grades. Ils ont également évalué les lésions labrales et du cartilage articulaire. Les résultats révèlent que le bruit augmente (p = 0,0009) et le CNR diminue (p = 0,001) de manière significative lorsque la dose diminue. A l'inverse, le bruit diminue (p = 0,0001) et le contraste sur bruit augmente (p < 0,003) de manière significative lorsque le pourcentage d'ASIR augmente ; on trouve également une augmentation significative des scores de la qualité de l'image pour le labrum, le cartilage, l'os sous-chondral, la qualité de l'image globale (au delà de ASIR 50%), ainsi que le bruit (p < 0,04), et une réduction significative pour l'os trabuculaire et les muscles (p < 0,03). Indépendamment du niveau de dose, il n'y a pas de différence significative pour la détection et la caractérisation des lésions labrales (n=24, p = 1) et des lésions cartilagineuses (n=40, p > 0,89) en fonction du pourcentage d'ASIR. Notre travail a permis de montrer que l'utilisation de plus de 50% d'ASIR permet de reduire de manière significative la dose d'irradiation reçue par le patient lors d'un arthro-scanner de hanche tout en maintenant une qualité d'image diagnostique comparable par rapport à un protocole de dose standard utilisant la rétroprojection filtrée.
Resumo:
PURPOSE: To investigate the influence of demethylation with 5-aza-cytidine (AZA) on radiation sensitivity and to define the intrinsic radiation sensitivity of methylation deficient colorectal carcinoma cells. METHODS AND MATERIALS: Radiation sensitizing effects of AZA were investigated in four colorectal carcinoma cell lines (HCT116, SW480, L174 T, Co115), defining influence of AZA on proliferation, clonogenic survival, and cell cycling with or without ionizing radiation. The methylation status for cancer or DNA damage response-related genes silenced by promoter methylation was determined. The effect of deletion of the potential target genes (DNMT1, DNMT3b, and double mutants) on radiation sensitivity was analyzed. RESULTS: AZA showed radiation sensitizing properties at >or=1 micromol/l, a concentration that does not interfere with the cell cycle by itself, in all four tested cell lines with a sensitivity-enhancing ratio (SER) of 1.6 to 2.1 (confidence interval [CI] 0.9-3.3). AZA successfully demethylated promoters of p16 and hMLH1, genes associated with ionizing radiation response. Prolonged exposure to low-dose AZA resulted in sustained radiosensitivity if associated with persistent genomic hypomethylation after recovery from AZA. Compared with maternal HCT116 cells, DNMT3b-defcient deficient cells were more sensitive to radiation with a SER of 2.0 (CI 0.9-2.1; p = 0.03), and DNMT3b/DNMT1-/- double-deficient cells showed a SER of 1.6 (CI 0.5-2.7; p = 0.09). CONCLUSIONS: AZA-induced genomic hypomethylation results in enhanced radiation sensitivity in colorectal carcinoma. The mediators leading to sensitization remain unknown. Defining the specific factors associated with radiation sensitization after genomic demethylation may open the way to better targeting for the purpose of radiation sensitization.
Resumo:
The new ACE inhibitor trandolapril was administered to normal volunteers at daily doses of 0.5, 2, and 8 mg for 10 days. Twenty-one volunteers, aged 21-30 years, were included in the study. To randomly selected groups of seven subjects, each dose was administered in a single-blind fashion. None of the doses induced a consistent fall in blood pressure. Angiotensin-converting enzyme activity (ACE) was measured in vitro using three different synthetic substrates (i.e., Hip-Gly-Gly, Z-Phe-His-Leu, or angiotensin I). Although the degree of ACE inhibition assessed with the three methods varied widely, all methods clearly indicated dose-dependent ACE inhibition. These in vitro results were confirmed by measuring ACE inhibition in vivo using the ratio of plasma angiotensin II (ANG II) to blood angiotensin I (ANG I). The dose-dependent ACE inhibition was paralleled by a dose-dependent rise in active renin and blood angiotensin I levels, most evident on day 10. In contrast, plasma ANG II levels on day 10 were not different whether the volunteers received 0.5 or 8 mg trandolapril. Thus, whereas increasing doses of this new ACE inhibitor progressively enhanced the blockade of ACE activity, this was not reflected by additional reductions of plasma ANG II levels. The progressive enhancement of ACE inhibition seemed to be offset by the accentuation of the compensatory rise in renin and ANG I, which was still partially converted to ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Combined radiation and hormone therapies have become common clinical practice in recent years for locally-advanced prostate cancers. The use of such concomitant therapy in the treatment of breast disease has been infrequently reported in the literature, but seems justified given the common hormonal dependence of breast cancer and the potential synergistic effect of these two treatment modalities. As adjuvant therapy, two strategies are used in daily clinical practice: upfront aromatase inhibitors or sequentially after a variable delay of tamoxifen. These molecules may, thus, interact with radiotherapy. Retrospectives studies recently published did not show any differences in terms of locoregional recurrences between concurrent or sequential radiohormonotherapy. Lung and skin fibroses due to concurrent treatment are still under debate. Nevertheless, late side effects appeared to be increased by such a treatment, particularly in hypersensitive patients identified at risk by the lymphocyte predictive test. Concurrent radiohormonotherapy should, thus, be delivered cautiously at least for these patients. This article details the potent advantages and risks of concurrent use of adjuvant hormonotherapy and radiotherapy in localized breast cancers.
Resumo:
Ultrafractionation of radiation therapy is a novel regimen consisting of irradiating tumors several times daily, delivering low doses (<0.75 Gy) at which hyperradiosensitivity occurs. We recently demonstrated the high efficiency of ultrafractionated radiotherapy (RT) on glioma xenografts and report here on a phase II clinical trial to determine the safety, tolerability, and efficacy of an ultrafractionation regimen in patients with newly and inoperable glioblastoma (GBM). Thirty-one patients with histologically proven, newly diagnosed, and unresectable supratentorial GBM (WHO grade IV) were enrolled. Three daily doses of 0.75 Gy were delivered at least 4 hours apart, 5 days per week over 6-7 consecutive weeks (90 fractions for a total of 67.5 Gy). Conformal irradiation included the tumor bulk with a margin of 2.5 cm. The primary end points were safety, toxicity, and tolerability, and the secondary end points were overall survival (OS) and progression-free survival (PFS). Multivariate analysis was used to compare the OS and PFS with the EORTC-NCIC trial 26981-22981/CE.3 of RT alone vs radiation therapy and temozolomide (TMZ). The ultrafractionation radiation regimen was safe and well tolerated. No acute Grade III and/or IV CNS toxicity was observed. Median PFS and OS from initial diagnosis were 5.1 and 9.5 months, respectively. When comparing with the EORTC/NCIC trial, in both PFS and OS multivariate analysis, ultrafractionation showed superiority over RT alone, but not over RT and TMZ. The ultrafractionation regimen is safe and may prolong the survival of patients with GBM. Further investigation is warranted and a trial associating ultra-fractionation and TMZ is ongoing.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P-glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualization. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after the latest dose, were measured in 59 patients receiving Glivec at diverse regimens, using a validated HPLC-UV method developed for this study. The results were analyzed by non-linear mixed effect modeling (NONMEM). A one-compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. At present, only the MDR1 polymorphism has been assessed and seems to affect the pharmacokinetic parameters of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40 %) and distribution volume (71 %). Together with intra-patient variability (34 %), this translates into an 8-fold width of the 90 %-prediction interval of plasma concentrations expected under a fixed dosing regimen. This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring program for imatinib. It may help to individualize the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline whole-blood values due to processing and concentration. PRP is used in various surgical fields to enhance soft-tissue and bone healing by delivering supra-physiological concentrations of autologous platelets at the site of tissue damage. These preparations may provide a good cellular source of various growth factors and cytokines, and modulate tissue response to injury. Common clinically available materials for blood preparations combined with a two-step centrifugation protocol at 280g each, to ensure cellular component integrity, provided platelet preparations which were concentrated 2-3 fold over total blood values. Costs were shown to be lower than those of other methods which require specific equipment and high-cost disposables, while safety and traceability can be increased. PRP can be used for the treatment of wounds of all types including burns and also of split-thickness skin graft donor sites, which are frequently used in burn management. The procedure can be standardized and is easy to adapt in clinical settings with minimal infrastructure, thus enabling large numbers of patients to benefit from a form of cellular therapy.
Resumo:
Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.
Resumo:
Imatinib has revolutionised the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GIST). Using a nonlinear mixed effects population model, individual estimates of pharmacokinetic parameters were derived and used to estimate imatinib exposure (area under the curve, AUC) in 58 patients. Plasma-free concentration was deduced from a model incorporating plasma levels of alpha(1)-acid glycoprotein. Associations between AUC (or clearance) and response or incidence of side effects were explored by logistic regression analysis. Influence of KIT genotype was also assessed in GIST patients. Both total (in GIST) and free drug exposure (in CML and GIST) correlated with the occurrence and number of side effects (e.g. odds ratio 2.7+/-0.6 for a two-fold free AUC increase in GIST; P<0.001). Higher free AUC also predicted a higher probability of therapeutic response in GIST (odds ratio 2.6+/-1.1; P=0.026) when taking into account tumour KIT genotype (strongest association in patients harbouring exon 9 mutation or wild-type KIT, known to decrease tumour sensitivity towards imatinib). In CML, no straightforward concentration-response relationships were obtained. Our findings represent additional arguments to further evaluate the usefulness of individualizing imatinib prescription based on a therapeutic drug monitoring programme, possibly associated with target genotype profiling of patients.
Resumo:
RESUME : Objectif: Le glioblastome multiforme (GBM) est la tumeur cérébrale maligne la plus agressive qui conduit au décès de la majorité des patients moins d'une année après le diagnostic. La plupart des agents chimiothérapeutiques actuellement disponibles ne traversent pas la barrière hémato¬encéphalique et ne peuvent par conséquent pas être utilisés pour ce type de tumeur. Le Temozolomide (TMZ) est un nouvel agent alkylant récemment développé pour le traitement des gliomes malins. A ce jour, très peu d'informations sont disponibles sur la pénétration intra-cérébrale de cet agent. Au cours d'une étude pilote de phase II menée auprès de 64 patients atteints de GBM, l'administration précoce de TMZ combinée à une radiothérapie standard (RT) afin d'intervenir au plus tôt dans l'évolution de la maladie, a permis de prolonger la survie de ces patients, résultat qui pu être confirmé par la suite lors de l'étude randomisée de phase III. L'objectif de cette étude a été de déterminer les paramètres pharmacocinétique du TMZ dans le plasma et le liquide céphalo-rachidien (LCR), d'évaluer l'influence de certains facteurs individuels (âge, sexe, surface corporelle, fonction rénale/hépatique, co-médications, RT concomitante) sur ces différents paramètres, et enfin d'explorer la relation existant entre l'exposition au TMZ et certains marqueurs cliniques d'efficacité et de toxicité. Matériel et Méthode: Les concentrations de TMZ ont été mesurées par chromatographie liquide à haute performance (HPLC) dans le plasma et le LCR de 35 patients atteints de GBM nouvellement diagnostiqués (étude pilote) ou de gliomes malins en récidive (étude récidive). L'analyse pharmacocinétique de population a été réalisée à l'aide du programme NONMEM. L'exposition systémique et cérébrale, définie par les AUC (Area Under the time-concentration Curve) dans le plasma et le LCR, a été estimée pour chaque patient et corrélée à la toxicité, la survie ainsi que la survie sans progression tumorale. Résultats: Un modèle à 1 compartiment avec une cinétique d'absorption et de transfert Kplasma -> LCR de ordre a été retenu afin de décrire le profil pharmacocinétique du TMZ. Les valeurs moyennes de population ont été de 10 L/h pour la clairance, de 30.3 L pour le volume de distribution, de 2.1 h pour la 1/2 vie d'élimination, de 5.78 hE-1 pour la constante d'absorption, de 7.2 10E4 hE-1 pour Kplasma->LCR et de 0.76 hE-1 pour KLCR plasma. La surface corporelle a montré une influence significative sur la clairance et le volume de distribution, alors que le sexe influence la clairance uniquement. L'AUC mesurée dans le LCR représente ~20% de celle du plasma et une augmentation de 15% de Kplasma->LCR a été observée lors du traitement concomitant de radiochimiothérapie. Conclusions: Cette étude est la première analyse pharmacocinétique effectuée chez l'homme permettant de quantifier la pénétration intra-cérébrale du TMZ. Le rapport AUC LCR/AUC Plasma a été de 20%. Le degré d'exposition systémique et cérébral au TMZ ne semble pas être un meilleur facteur prédictif de la survie ou de la tolérance au produit que ne l'est la dose cumulée seule. ABSTRACT Purpose: Scarce information is available on the brain penetration of temozolomide (TMZ), although this novel methylating agent is mainly used for the treatment of ma¬lignant brain tumors. The purpose was to assess TNIZ phar¬macokinetics in plasma and cerebrospinal fluid (CSF) along with its inter-individual variability, to characterize covari¬ates and to explore relationships between systemic or cere¬bral drug exposure and clinical outcomes. Experimental Design: TMZ levels were measured by high-performance liquid chromatography in plasma and CSF samples from 35 patients with newly diagnosed or recurrent malignant gliomas. The population pharmacoki¬netic analysis was performed with nonlinear mixed-effect modeling software. Drug exposure, defined by the area un¬der the concentration-time curve (AUC) in plasma and CSF, was estimated for each patient and correlated with toxicity, survival, and progression-free survival. Results: A three-compartment model with first-order absorption and transfer rates between plasma and CSF described the data appropriately. Oral clearance was 10 liter/h; volume of distribution (VD), 30.3 liters; absorption constant rate, 5.8 hE-1; elimination half-time, 2.1 h; transfer rate from plasma to CSF (Kplasma->CSF), 7.2 x 10E-4hE-1 and the backwards rate, 0.76hE-1. Body surface area signifi¬cantly influenced both clearance and VD, and clearance was sex dependent. The AU CSF corresponded to 20% of the AUCplasma. A trend toward an increased K plasma->CSF of 15% was observed in case of concomitant radiochemo-therapy. No significant correlations between AUC in plasma or CSF and toxicity, survival, or progression-free survival were apparent after deduction of dose-effect. Conclusions: This is the first human pharmacokinetic study on TMZ to quantify CSF penetration. The AUC CSF/ AUC plasma ratio was 20%. Systemic or cerebral exposures are not better predictors than the cumulative dose alone for both efficacy and safety.
Resumo:
OBJECTIVES: A lipidomic approach was employed in a clinically well-defined cohort of healthy obese women to explore blood lipidome phenotype ascribed to body fat deposition, with emphasis on epicardial adipose tissue (EAT). METHODS: The present investigation delivered a lipidomics signature of epicardial adiposity under healthy clinical conditions using a cohort of 40 obese females (age: 25-45 years, BMI: 28-40 kg/m(2) ) not showing any metabolic disease traits. Lipidomics analysis of blood plasma was employed in combination with in vivo quantitation of mediastinal fat depots by computerized tomography. RESULTS: All cardiac fat depots correlated to indicators of hepatic dysfunctions (ALAT and ASAT), which describe physiological connections between hepatic and cardiac steatosis. Plasma lipidomics encompassed overall levels of lipid classes, fatty acid profiles, and individual lipid species. EAT and visceral fat associated with diacylglycerols (DAG), triglycerides, and distinct phospholipid and sphingolipid species. A pattern of DAG and phosphoglycerols was specific to EAT. CONCLUSIONS: Human blood plasma lipidomics appears to be a promising clinical and potentially diagnostic readout for patient stratification and monitoring. Association of blood lipidomics signature to regio-specific mediastinal and visceral adiposity under healthy clinical conditions may help provide more biological insights into obese patient stratification for cardiovascular disease risks.
Resumo:
The anticancer drug imatinib has transformed the treatment and prognosis of chronic myeloid leukemia and gastrointestinal stromal tumor. However, the treatment must be taken indefinitely and is not devoid of inconveniences and toxicity. Moreover, resistance or escape from disease control are occurring. Considering the large interindividual differences in the function of the enzymatic and transport systems involved in imatinib disposition, exposure to this drug can be expected to vary widely among patients. This book describes an observational clinical trial aiming at exploring the influence of these covariates on imatinib pharmacokinetics and assessing the interindividual variability of the pharmacokinetic parameters of the drug. A large interindividual variability was observed, together with some preliminary concentration-effect relationships. These elements are arguments to further investigate the potential benefit of a therapeutic drug monitoring program to optimize the use of imatinib in patients. Such results should be especially useful to clinical oncologists or scientists involved in clinical oncology research.
Resumo:
AimThe study of adaptive radiations provides an evolutionary perspective on the interactions between organisms and their environment, and is necessary to understand global biodiversity. Adaptive radiations can sometimes be replicated over several disjunct geographical entities, but most examples are found on island or in lakes. Here, we investigated the biogeographical history of the clownfishes, a clade of coral reef fish with ranges that now span most of the Indo-Pacific Ocean, in order to explore the geographical structure of an unusual adaptive radiation. LocationIndian Ocean, Indo-Australian Archipelago (IAA) and Central Pacific Ocean. MethodsWe generated DNA sequence data comprising seven nuclear markers for 27 of the 30 clownfish species. We then inferred a Bayesian phylogeny and reconstructed the biogeographical history of the group using three different methods. Finally, we applied a biogeographical model of diversification to assess whether diversification patterns differ between the Indian and Pacific Oceans. ResultsThe phylogenetic tree is highly supported and allows reconstruction of the biogeographical history of the clade. While most species arose in the IAA, one clade colonized the eastern shores of Africa and diversified there. We found that the diversification rate of clownfishes does not differ between the main radiation and the African clade. Main conclusionsThe clownfishes first appeared and diversified in the IAA. Following a colonization event, a geographically independent radiation occurred in the Indian Ocean off East Africa. This rare example of replicated adaptive radiation in the marine realm provides intriguing possibilities for further research on ecological speciation in the sea.
Resumo:
In 9 drug-resistant patients with partial seizures treated with vigabatrin, gamma-vinyl GABA (VGB), alanine aminotransaminase (ALAT) activity in plasma was significantly reduced. Comparison of in vitro with in vivo measurements led us to conclude that this reduction is mainly an in vivo phenomenon, perhaps due to cross-enzyme inhibition. The assessment of two biological variables linked with ALAT, glucose and alanine levels under fasting conditions, failed to show any significant metabolic alterations. VGB is an effective drug for partial epilepsy. Our observations do not suggest that reduced ALAT activity is of clinical concern.