935 resultados para Piezoelectric actuators and sensors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, extensive experiments are firstly conducted to characterize the performance of using the emerging IEEE 802.15.4-2011 ultra wideband (UWB) for indoor localization, and the results demonstrate the accuracy and precision of using time of arrival measurements for ranging applications. A multipath propagation controlling technique is synthesized which considers the relationship between transmit power, transmission range and signal-to-noise ratio. The methodology includes a novel bilateral transmitter output power control algorithm which is demonstrated to be able to stabilize the multipath channel, and enable sub 5cm instant ranging accuracy in line of sight conditions. A fully-coupled architecture is proposed for the localization system using a combination of IEEE 802.15.4-2011 UWB and inertial sensors. This architecture not only implements the position estimation of the object by fusing the UWB and inertial measurements, but enables the nodes in the localization network to mutually share positional and other useful information via the UWB channel. The hybrid system has been demonstrated to be capable of simultaneous local-positioning and remote-tracking of the mobile object. Three fusion algorithms for relative position estimation are proposed, including internal navigation system (INS), INS with UWB ranging correction, and orientation plus ranging. Experimental results show that the INS with UWB correction algorithm achieves an average position accuracy of 0.1883m, and gets 83% and 62% improvements on the accuracy of the INS (1.0994m) and the existing extended Kalman filter tracking algorithm (0.5m), respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An Electronic Nose is being jointly developed between the University of Greenwich and the Institute of Intelligent Machines to detect the gases given off from an oil filled transformer when it begins to break down. The gas sensors being used are very simple, consisting of a layer of Tin Oxide (SnO2) which is heated to approximately 640 K and the conductivity varies with the gas concentrations. Some of the shortcomings introduced by the commercial gas sensors available are being overcome by the use of an integrated array of gas sensors and the use of artificial neural networks which can be 'taught' to recognize when the gas contains several components. At present simulated results have achieved up to a 94% success rate of recognizing two component gases and future work will investigate alternative neural network configurations to maintain this success rate with practical measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a multimodal detection and tracking algorithm for sensors composed of a camera mounted between two microphones. Target localization is performed on color-based change detection in the video modality and on time difference of arrival (TDOA) estimation between the two microphones in the audio modality. The TDOA is computed by multiband generalized cross correlation (GCC) analysis. The estimated directions of arrival are then postprocessed using a Riccati Kalman filter. The visual and audio estimates are finally integrated, at the likelihood level, into a particle filter (PF) that uses a zero-order motion model, and a weighted probabilistic data association (WPDA) scheme. We demonstrate that the Kalman filtering (KF) improves the accuracy of the audio source localization and that the WPDA helps to enhance the tracking performance of sensor fusion in reverberant scenarios. The combination of multiband GCC, KF, and WPDA within the particle filtering framework improves the performance of the algorithm in noisy scenarios. We also show how the proposed audiovisual tracker summarizes the observed scene by generating metadata that can be transmitted to other network nodes instead of transmitting the raw images and can be used for very low bit rate communication. Moreover, the generated metadata can also be used to detect and monitor events of interest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper could be consider seminal in the Civil Engineering field as it describes the first application of these sensors to a complex durability and management issue. For this reason it is potentially controversial as it requires Civil Engineers to re-evaluate the nature and scale of durability testing.