850 resultados para Physiological medium
Resumo:
Changes in the activities of oxidative enzymes (indole acetic acid oxidase, peroxidase and catalase), endogenous hormones (gibberellic acid (GA3), indole acetic acid (IAA), abscisic acid (ABA) and cytokinins (AsZeatin), photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), total carbohydrates, total soluble sugars, amino acid proline and vegetative growth parameters were used as indicators to explain the physiological role of the growth retardant prohexadione-calcium on Vicia faba seedlings 40 days after sowing under salinity stress for 30 days. The obtained results show that soaking faba bean seeds prior to sowing at different concentrations of prohexadione-calcium (0, 10, 20 and 30 ppm) significantly increased the activities of indole acetic acid oxidase (IAA-oxidase) and peroxidase enzymes, but decreased the catalase enzyme activity as compared with their respective control. Application of prohexadione-Ca caused markedly decreases in the endogenous contents of gibberellins and indole acetic acid (IAA) but increased the levels of natural growth inhibitor abscisic acid (ABA) and cytokinins in the shoots of faba bean seedlings. All the prohexadione-Ca concentrations increased the contents of amino acid proline, photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), total carbohydrates and total soluble sugars in faba bean seedlings grown under salt stress. Application of prohexadione-Ca decreased significantly seedling height and shoot fresh weight but significantly increased shoot dry weight.
Resumo:
Lactofen is a diphenylether herbicide recommended to control broad-leaved weeds in soybean (Glycine max) fields and its mechanism of action is the inhibition of protoporphyrinogen-IX oxidase (Protox), which acts in the chlorophyll biosynthesis. This inhibition results in an accumulation of protoporphyrin-IX, which leads to the production of reactive oxygen species (ROS) that cause oxidative stress. Consequently, spots, wrinkling and leaf burn may occur, resulting in a transitory crop growth interruption. However, nitric oxide (NO) acts as an antioxidant in direct ROS scavenging. Thus, the aim of this work was to verify, through phytometric and biochemical evaluations, the protective effect of NO in soybean plants treated with the herbicide lactofen. Soybean plants were pre-treated with different levels of sodium nitroprusside (SNP), a NO-donor substance, and then sprayed with 168 g a.i. ha-1 lactofen. Pre-treatment with SNP was beneficial because NO decreased the injury symptoms caused by lactofen in young leaflets and kept low the soluble sugar levels. Nevertheless, NO caused slower plant growth, which indicates that further studies are needed in order to elucidate the action mechanisms of NO in signaling the stress caused by lactofen in soybean crop.
Resumo:
This bachelor's thesis is about to find out to what extent Finnish managers and small and medium sized organizations are willing and able to put employee empowerment into practice and what experiences they have got from employee empowerment as an approach towards job redesign. Some of the top enterprises in the world are known for their empowered employees as a single most important factor for their success and this thesis focuses on introducing the subject to Finnish managers and organizations to find out what benefits, barriers and other thoughts they have about the whole idea of empowered employees in Finnish organization culture. Most notable findings in this thesis are that Finnish managers do think that their organization's employees are capable to work efficiently if their job is extended and the organizations would perform better when right person's job is enriched and he/she is given more power to solve problems.
Resumo:
Experiments were conducted in 2010 to determine the influence of plant density and seed position on the mother plant on seed physiological characteristics of cocklebur (Xanthium strumarium). Cocklebur burs were collected in fall of 2010 from Research Farm of University of Agricultural Sciences and Natural Resources of Gorgan, Iran. The experiment was established as factorial arrangement using a completely randomized design with three replications. The factors included different densities of cocklebur (0, 2, 4, 6 and 8 plant m-2) and the top and bottom parts of the canopy. Non dormant seeds were used for determining cardinal temperatures and tolerance to salinity and drought stresses. Base, optimum and ceiling germination temperatures were estimated between 7.09 to 12.33, 32 to 35 and 44 to 45 respectively in different treatments. Salinity stress up to 300 Mm and osmotic potential 8 bar inhibited the germination completely. Comparison of base temperatures and sigmoid equation coefficients showed that seeds produced in the top had higher germination than those that produced at the bottom of the mother plant. It seems plant densities through seed position on the mother plant affect seed quality. Likewise changes of light quality and quantity in shade environment increased seed dormancy in matured seeds. Shade environment affect seed germination on mother plant that increased dormancy of seeds maturing under shade be an adaptive response that reduces the probability of germination of offspring under unfavorable (shade, competitive) conditions.
Resumo:
The objective of this study was to determine changes in gas exchange and inhibition of EPSPs, based on the accumulation of shikimic acid in horseweed biotypes resistant and sensitive to glyphosate. Two experiments were conducted in a factorial model. The first one evaluated horseweed biotypes (one resistant and one susceptible to glyphosate), and herbicide rates (0 and 1,080 g a.e. ha ¹) applied on the weed. In the second experiment, the horseweed biotypes (susceptible and resistant to glyphosate) were evaluated in five periods as following: 0, 3, 7, 10, and 14 days after herbicide application (DAH). The photosynthetic rate, transpiration, carboxylation efficiency, and water efficiency were determined using an infrared gas analyzer (IRGA), and shikimic acid concentration by HPLC. The application of glyphosate damaged the photosynthetic parameters of the susceptible biotype, causing complete inhibition of the photosynthetic rate, transpiration rate, carboxylation efficiency and water use efficiency, starting from the 7 DAH. On the other hand, total inhibition of the photosynthetic parameters was not observed for the resistant biotype. Shikimic acid accumulation occurred in both biotypes after glyphosate application but the susceptible biotype had the highest concentrations, indicating greater sensitivity of the enzyme EPSPs. The accumulation of shikimic acid in the resistant biotype indicates that the mechanism of resistance is not related to the total insensitivity of the enzyme EPSPs to glyphosate and/or that other resistance mechanisms may be involved.
Resumo:
This study aimed to evaluate the tolerance of sugarcane cultivars to ratoon eradication under different glyphosate rates by means of physiological responses. Therefore, a trial was carried out in randomized complete blocks with 4 x 4 factorial design (cultivars x rates) totaling 16 treatments with four replicates. The cultivars IAC91-5155, IACSP93-3046, and IAC86-2480 and IAC87-3396 and the glyphosate rates 0 g ha-1; 1,920 g ha-1; 2,400 g ha-1; 2,880 g ha-1 were tested. The variables analyzed were percentage of tiller mortality, quantum efficiency of PSII (Fv/Fm) and SPAD index. The results showed that there are differences among sugarcane cultivars for tiller eradication and for physiological responses with glyphosate different rates. The rate of 2,880 g ha-1 was the most efficient in eliminating sugarcane tillers. The cultivars IAC86-2480, IAC87-3396 and IACSP93-3046 were the most sensitive and the IAC91-5155 tolerated, for a longer period of time, the damage to the photosynthetic apparatus of the ratoons caused by glyphosate desiccation. Due to different responses, different managements should be considered for eliminating ratoons of different cultivars.
Resumo:
The use of fungi in weeds control programs depends upon the conidia production in large scale. Therefore, this study aimed to evaluate liquid and solid culture media and the cultivation by biphasic system for the conidia production of Bipolaris euphorbiae Muchovej & Carvalho a specific pathogen of Euphorbia heterophylla. The liquid media were obtained from agro-industrial waste or by-products, and the solid media were prepared with mixtures of grains and grain derivatives. The liquid medium made with sugar cane molasses stood out from the others because it provided great sporulation (23 x 10(4) conidia mL-1 of medium), conidial viability (99.7%), and formation of mycelial fungal biomass (1.26 g 100 mL-1 of medium). On solid media conidial production was markedly higher than in liquid media, especially the medium composed by a blend of sorghum grain (40%) and soybean hulls (60%) where the fungus produced 2.3 x 10(7) conidia g-1 of medium. The cultivation of B. euphorbiae in biphasic system not promoted a significant increase in the production of conidia. The solid media were more effective for the mass production of fungus and mixtures of grains and derivatives were effective for increasing conidia production.
Resumo:
Herbicides that inhibit the enzyme protoporphyrinogen oxidase (PROTOX) are usually effective to control dicotyledonous weeds and their agronomic efficacy is affected by environmental and physiological factors. The objective of this review is to summarize the knowledge of those factors available in the scientific literature in the last decade. Environmental factors that influence PROTOX inhibitors include temperature, irradiance and relative humidity. The most relevant physiological factors are the activity of enzymes that can detoxify herbicides and also of enzymes that mitigate the effects of oxidative stress in plants. The study also suggests some possible management strategies that could optimize the activity of PROTOX-inhibiting herbicides.
Resumo:
ABSTRACTDepending on the cultivar, the use of desiccants in the preharvest can favor maintenance of physiological quality. The objective of the study was to assess the physiological quality of soybean seeds as due to the use of apreharvest desiccant and desiccation time in two harvests (2011/12 and 2012/13). The treatments were five soybean cultivars, two growth stages of application, a control (without desiccant application), and three desiccants (glufosinate-ammonium, carfentrazone-ethyl and paraquat) (2011/12 harvest). In the 2012/13 harvest the carfentrazone-ethyl desiccant was replaced by diquat. The physiological quality of seeds was assessed by the percentage of viability and vigor (cold test, tetrazolium test and accelerated aging test). In 2011/12 harvest, there was an early harvest in six days with the use of glufosinate-ammonium and paraquat desiccants, when desiccation was done in stage R7.1, with maintenance of seed quality; however it was dependent on the cultivar. In the 2012/13 harvest there was no early harvesting due to the presence of rain in the preharvest and the use of desiccation did not affect the physiological quality of the seeds either. Cultivar NA5909 RG was more tolerant to remaining in the cultivation environment and maintained higher viability than 90% and greater vigor of 71% by the cold test compared to cultivar BMX Turbo (2011/12 harvest). It is concluded that desiccation can be a viable alternative to the soybean early harvesting, but it depends on the cultivar, the time of desiccation, the active principle of the desiccant and the absence of rain in preharvest.
Resumo:
In order to adapt to daily environmental changes, especially in relation to light availability, many organisms, such as plants, developed a vital mechanism that controls time-dependent biological events: the circadian clock. The circadian clock is responsible for predicting the changes that occur in the period of approximately 24 hours, preparing the plants for the following phases of the cycle. Some of these adaptations can influence the response of weeds to the herbicide application. Thus, the objectives of this review are to describe the physiological and genetic mechanisms of the circadian clock in plants, as well as to demonstrate the relationship of this phenomenon with the effectiveness of herbicides for weed control. Relationships are described between the circadian clock and the time of application of herbicides, leaf angle and herbicide interception, as well as photosynthetic activity in response to the circadian clock and herbicide efficiency. Further, it is discussed the role of phytochrome B (phyB) in the sensitivity of plants to glyphosate herbicide. The greater understanding of the circadian clock in plants is essential to achieve greater efficiency of herbicides and hence greater control of weeds and higher crop yields.
Resumo:
Somatic embryogenesis represents a valuable tool for the studies on the basic aspects of plant embryo development. Today this process is used as a potencial technique for large-scale plant micropropagation although, so far, it has been applied to only a small number of species. However, when somatic embryos are malformed they are considered economically useless. In Acca sellowiana (O. Berg) Burret, an important fruit-producing crop, large amounts of anomalous somatic embryos (76.3%) were found just after 40 days of culture of explants in a 2,4-D containing medium. Among the anomalous forms found in the cotiledonary stage, 12.2% consisted of fused embryos, 40.4% displayed fused cotyledons, 13.0% presented supernumerary cotyledons, and 10.7% showed absence or poorly developed cotyledons, including those without the shoot apical meristem. Histological analyses indicated that the altered embryos were formed either directly from cotyledons, hypocotyl and radicle of the zygotic embryos used as explants, or indirectly from calli formed from these tissue parts. It is suggested that the formation of anomalous somatic embryos, as well as a low frequency of conversion into emblings reflect physiological and/or genetic disturbances triggered by the presence of 2,4-D in the medium. In vitro experimental alternative approaches are discussed in order to lessen the occurrence of malformed somatic embryos.
Resumo:
The purpose of this thesis was to study the design of demand forecasting processes and management of demand. In literature review were different processes found and forecasting methods and techniques interviewed. Also role of bullwhip effect in supply chain was identified and how to manage it with information sharing operations. In the empirical part of study is at first described current situation and challenges in case company. After that will new way to handle demand introduced with target budget creation and how information sharing with 5 products and a few customers would bring benefits to company. Also the new S&OP process created within this study and organization for it.
Resumo:
In this work we attempted to characterize the diaspores and the germination process of Piper aduncum L., as well as to verify the influence of the interaction between presence and absence of light (photoperiod of 12 hours and dark) and temperature (25 °C, 30 °C and 20-30 °C) and also of gibberellin (0, 50, 100, 200 and 400 mg L-1) on the root protrusion and normal seedlings formation. The diaspores are very small with a thousand seed weight of 0.3645 g, 13% moisture and protein reserve. Diaspores are strict positively photoblastic in the tested temperature range and the optimum temperature for root protrusion was 30 °C, while for normal seedlings was 25 °C. The previous permanence in the dark led to an increase in the speed of root protrusion and percentage and speed of seedling formation. The application of gibberellic acid negatively interfered with the protrusion and growth of the radicle while favoring the elongation of hypocotyls.
Resumo:
We studied the basal and thyrotropin-releasing hormone (TRH) (50 nM) induced thyrotropin (TSH) release in isolated hemipituitaries of ovariectomized rats treated with near-physiological or high doses of 17-ß-estradiol benzoate (EB; sc, daily for 10 days) or with vehicle (untreated control rats, OVX). One group was sham-operated (normal control). The anterior pituitary glands were incubated in Krebs-Ringer bicarbonate medium, pH 7.4, at 37oC in an atmosphere of 95% O2/5% CO2. Medium and pituitary TSH was measured by specific RIA (NIDDK-RP-3). Ovariectomy induced a decrease (P<0.05) in basal TSH release (normal control = 44.1 ± 7.2; OVX = 14.7 ± 3.0 ng/ml) and tended to reduce TRH-stimulated TSH release (normal control = 33.0 ± 8.1; OVX = 16.6 ± 2.4 ng/ml). The lowest dose of EB (0.7 µg/100 g body weight) did not reverse this alteration, but markedly increased the pituitary TSH content (0.6 ± 0.06 µg/hemipituitary; P<0.05) above that of OVX (0.4 ± 0.03 µg/hemipituitary) and normal rats (0.46 ± 0.03 µg/hemipituitary). The intermediate EB dose (1.4 µg/100 g body weight) induced a nonsignificant tendency to a higher TSH response to TRH compared to OVX and a lower response compared to normal rats. Conversely, in the rats treated with the highest dose (14 µg/100 g body weight), serum 17-ß-estradiol was 17 times higher than normal, and the basal and TRH-stimulated TSH release, as well as the pituitary TSH content, was significantly (P<0.05) reduced compared to normal rats and tended to be even lower than the values observed for the vehicle-treated OVX group, suggesting an inhibitory effect of hyperestrogenism. In conclusion, while reinforcing the concept of a positive physiological regulatory role of estradiol on the TSH response to TRH and on the pituitary stores of the hormone, the present results suggest an inhibitory effect of high levels of estrogen on these responses
Resumo:
Cytokines are a heterogeneous group of molecules that have been associated with several functions in the nervous system, such as survival and differentiation of neuronal and glial cells. In the present study, we demonstrated that conditioned medium from spleen cells activated with concanavalin A increased neuritogenesis and survival of retinal cells, as measured by biochemical and morphological criteria. Our data showed that conditioned medium induced a five-fold increase in the amount of protein after 120 h in vitro. This effect was not inhibited by the blockade of voltage-dependent L-type calcium channels with 5.0 µM nifedipine. However, the use of an intracellular calcium chelator (15.0 µM BAPTA-AM) inhibited this effect. Our results support the idea that factors secreted by activated lymphocytes, such as cytokines, can modulate the maintenance and the differentiation of rat retinal cells in vitro, indicating a possible role of these molecules in the development of retinal cells, as well as in its protection against pathological conditions