926 resultados para Photovoltaic system operation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal grid lines are a vital element in multijunction solar cells in order to take out from the cell the generated photocurrent. Nevertheless all this implies certain shadowing factor and thus certain reflectivity on cells surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. It has been possible thanks to the recent invention of the advanced Köhler concentrators by LPI, likely to integrate one of these cavities easily. We have proven the excellent performance of these cavities integrated in this kind of CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell=25ºC and relative efficiency and Isc gains of over 6%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP∕GaInAs∕Ge 3J cell and a concentration Back‐Point‐Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell′s reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free‐form RXI‐type concentrator with a band‐pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band‐pass filter sends the IR photons in the 900–1200 nm band to the silicon cell. Computer simulations predict that four‐terminal terminal designs could achieve ∼46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof‐of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ∼ 100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las plantas solares fotovoltaicas, que son cada vez más habituales en nuestra sociedad, necesitan contar con un sistema de comunicaciones que permita la monitorización continua del funcionamiento de los diferentes equipos así como el control remoto de los mismos y la regulación de la producción. En este Proyecto se ha estudiado la estructura eléctrica y constructiva de una planta fotovoltaica genérica, prestando especial atención a los requerimientos que debe reunir el sistema de comunicaciones. El diseño del sistema de comunicaciones se ha realizado sobre una planta solar ficticia aún sin construir analizando su estructura sobre plano y aproximando la topología de red que se necesita implementar. Partiendo de esta estructura y de las cualidades de este tipo de instalaciones se ha realizado un análisis de las tecnologías disponibles, optando por una solución inalámbrica mixta, utilizando enlaces WiMAX y WiFi, manteniendo tecnología cableada únicamente para interconexión cercana de equipos. Esta elección se ha realizado con la intención de dotar a la planta de un sistema fiable, robusto y flexible sin descuidar el factor económico; para eso se ha cuidado la selección de equipamiento, su disposición en la planta y su configuración básica de funcionamiento. A partir de la solución definitiva se ha obtenido un presupuesto económico de la instalación. Se ha completado el diseño mediante simulaciones radioeléctricas, para asegurar un correcto funcionamiento de los diferentes enlaces. The photovoltaic solar power plants, which are becoming more common in our society, need a communications system that allowing continuous monitoring of the operation of the different devices as well as their remote control and regulation of the production. In this Project, electrical structure and construction of a generic photovoltaic solar plant have been studied, paying special attention to the essential requirements which must be fulfilled by the communication system. The communication system design is was carried out assuming that photovoltaic solar plant is fictitious and before its construction, analysing its structure over site plan and approximating the net topology in order to implement it. The analysis of the available technologies was performed basing on this structure as well as the qualities of this kind of facilities. As a result, a wireless mix option with WIMAX and WiFi links was chosen, using cable technology only to the close interconnection between equipments. This choice was made with the intention of giving the plant with a reliable, robust and flexible system without neglecting the economic factor, so that, the selection of equipment, the layout at the plant and operating basic configuration have been paid great attention. From the final solution is obtained a financial budget of the facility. Design is completed by radioelectric simulations to ensure the operation of the several links properly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, it uses the electricity at the moment in which air humidity and temperature are optima to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system, rather than irrigating young plants in such a degree as to boost their growth, is to maintain them alive in the dryer periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crop diseases sometimes are related to the irradiance that the crop receives. When an experiment requires the measurement of the irradiance, usually it results in an expensive data acquisition system. If it is necessary to check many test points, the use of traditional sensors will increase the cost of the experiment. By using low cost sensors based in the photovoltaic effect, it is possible to perform a precise test of irradiance with a reduced price. This work presents an experiment performed in Ademuz (Valencia, Spain) during September of 2011 to check the validity of low cost sensors based on solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the applicability of a ferrous oxalate mediated photo-Fenton pretreatment for indigo-dyed wastewaters as to produce a biodegradable enough effluent, likely of being derived to conventional biological processes. The photochemical treatment was performed with ferrous oxalate and hydrogen peroxide in a Compound Parabolic Concentrator (CPC) under batch operation conditions. The reaction was studied at natural pH conditions (5–6) with indigo concentrations in the range of 6.67–33.33 mg L−1, using a fixed oxalate-to-iron mass ratio (C2O42−/Fe2+ = 35) and assessing the system's biodegradability at low (257 mg L−1) and high (1280 mg L−1) H2O2 concentrations. In order to seek the optimal conditions for the treatment of indigo dyed wastewaters, an experimental design consisting in a statistical surface response approach was carried out. This analysis revealed that the best removal efficiencies for Total Organic Carbon (TOC) were obtained for low peroxide doses. In general it was observed that after 20 kJ L−1, almost every treated effluent increased its biodegradability from a BOD5/COD value of 0.4. This increase in the biodegradability was confirmed by the presence of short chain carboxylic acids as intermediate products and by the mineralization of organic nitrogen into nitrate. Finally, an overall decrease in the LC50 for Artemia salina indicated a successful detoxification of the effluent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of wind power as an electric energy source is profitable from an environmental point of view and improves the energetic independence of countries with little fossil fuel resources. However, the wind resource randomness poses a great challenge in the management of electric grids. This study raises the possibility of using hydrogen as a mean to damp the variability of the wind resource. Thus, it is proposed the use of all the energy produced by a typical wind farm for hydrogen generation, that will in turn be used after for suitable generation of electric energy according to the operation rules in a liberalized electric market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a fiber-based optical powering (or power-by-light) system capable of providing more than 1 W is developed. The prototype was used in order to power a shunt regulator for controlling the activation and deactivation of solar panels in satellites. The work involves the manufacture of a light receiver (a GaAs multiple photovoltaic converter (MPC)), a power conditioning block, and a regulator and the implementation and characterization of the whole system. The MPC, with an active area of just 3.1 mm2, was able to supply 1 W at 5 V with an efficiency of 30%. The maximum measured device efficiency was over 40% at an input power (Pin) of 0.5 W. Open circuit voltage over 7 V was measured for Pin over 0.5 W. A system optoelectronic efficiency (including the optical fiber, connectors, and MPC) of 27% was measured at an output power (Pout) of 1 W. At Pout = 0.2 W, the efficiency was as high as 36%. The power conditioning block and the regulator were successfully powered with the system. The maximum supplied power in steady state was 0.2 W, whereas in transient state, it reached 0.44 W. The paper also describes the characterization of the system within the temperature range going from -70 to +100?°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a reliability analysis of a photovoltaic rural electrification (PVRE) programme is proposed considering the failures in the 13 000 installed Solar Home System (SHS) devices occurring over a long operating period of 5 years. A previous arrangement of the database and a brief explanation of the reliability concepts will serve to introduce the failure distribution of every component, from which the SHS lifetime operating features will be described. An application example will show the usefulness of the obtained results in the forecasting of spare parts during the maintenance period. The conclusions of this study may be useful in the scientific design of PVRE programme maintenance structures, with the goal of shedding some light on the technical management mechanisms in decentralised rural electrification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the dome-shaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel-Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PV Off-Grid systems have demonstrated to be a good solution for the electrification of remote areas [1]. A hybrid system is one kind of these systems. The principal characteristic is that it uses PV as the main generator and has a backup power supply, like a diesel generator, for instance, that is used when the CPV generation is not enough to meet demand. To study the use of CPV in these systems, ISFOC has installed a demonstration hybrid system at its headquarters. This hybrid system uses CPV technology as main generator and the utility grid as the backup generator. A group of batteries have been mounted as well to store the remaining energy from the CPV generator when nedeed. The energy flows are managed by a SMA system based on Sunny Island inverters and a Multicluster-Box (figure 1). The Load is the air-conditioning system of the building, as it has a consumption profile higher than the CPV generator and can be controlled by software [2]. The first results of this system, as well as the first chances of improvement, as the need of a bigger CPV generator and a better management of the energy stored in the batteries, are presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, construction and operation of the tunnels of M-30, the major ring road in the city of Madrid (Spain), represent a very interesting project in wich a wide variety of situations -geometrical, topographical, etc.- had to be covered, in variable conditions of traffic. For that reasons, the M-30 project is a remarkable technical challenge, which, after its completion, turned into an international reference. From the "design for safety" perspective, a holistic approach has been used to deal with new technologies, integration of systems and development of the procedures to reach the maximum level. However, one of the primary goals has been to achieve reasonable homogeneity characteristics which can permit operate a netword of tunels as one only infraestructure. In the case of the ventilation system the mentioned goals have implied innovative solutions and coordination efforts of great interest. Consequently, this paper describes the principal ideas underlying the conceptual solution developed focusing on the principal peculiarities of the project.