997 resultados para Pesquisa e desenvolvimento, Brasil


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Waste generated during the exploration and production of oil, water stands out due to various factors including the volume generated, the salt content, the presence of oil and chemicals and the water associated with oil is called produced water. The chemical composition of water is complex and depends strongly on the field generator, because it was in contact with the geological formation for thousands of years. This work aims to characterize the hydrochemical water produced in different areas of a field located in the Potiguar Basin. We collected 27 samples from 06 zones (400, 600, 400/600, 400/450/500, 350/400, A) the producing field called S and measured 50 required parameter divided between physical and chemical parameters, cations and anions. In hydrochemical characterization was used as tools of reasons ionic calculations, diagrams and they hydrochemical classification diagram Piper and Stiff diagram and also the statistic that helped in the identification of signature patterns for each production area including the area that supplies water injected this field for secondary oil recovery. The ionic balance error was calculated to assess the quality of the results of the analysis that was considered good, because 89% of the samples were below 5% error. Hydrochemical diagrams classified the waters as sodium chloride, with the exception of samples from Area A, from the injection well, which were classified as sodium bicarbonate. Through descriptive analysis and discriminant analysis was possible to obtain a function that differs chemically production areas, this function had a good hit rate of classification was 85%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the increasing of demand for natural gas and the consequent growth of the pipeline networks, besides the importance of transport and transfer of oil products by pipeline, and when it comes to product quality and integrity of the pipeline there is an important role regarding to the monitoring internal corrosion of the pipe. This study aims to assess corrosion in three pipeline that operate with different products, using gravimetric techniques and electrical resistance. Chemical analysis of residues originated in the pipeline helps to identify the mechanism corrosive process. The internal monitoring of the corrosion in the pipelines was carried out between 2009 and 2010 using coupon weight loss and electrical resistance probe. Physico-chemical techniques of diffraction and fluorescence X-rays were used to characterize the products of corrosion of the pipelines. The corrosion rate by weight loss was analyzed for every pipeline, only those ones that has revealed corrosive attack were analyzed located corrosion rate. The corrosion potential was classified as low to pipeline gas and ranged from low to severe for oil pipelines and the pipeline derivatives. Corrosion products were identified as iron carbonate, iron oxide and iron sulfide

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water injection is the most widely used method for supplementary recovery in many oil fields due to various reasons, like the fact that water is an effective displacing agent of low viscosity oils, the water injection projects are relatively simple to establish and the water availability at a relatively low cost. For design of water injection projects is necessary to do reservoir studies in order to define the various parameters needed to increase the effectiveness of the method. For this kind of study can be used several mathematical models classified into two general categories: analytical or numerical. The present work aims to do a comparative analysis between the results presented by flow lines simulator and conventional finite differences simulator; both types of simulators are based on numerical methods designed to model light oil reservoirs subjected to water injection. Therefore, it was defined two reservoir models: the first one was a heterogeneous model whose petrophysical properties vary along the reservoir and the other one was created using average petrophysical properties obtained from the first model. Comparisons were done considering that the results of these two models were always in the same operational conditions. Then some rock and fluid parameters have been changed in both models and again the results were compared. From the factorial design, that was done to study the sensitivity analysis of reservoir parameters, a few cases were chosen to study the role of water injection rate and the vertical position of wells perforations in production forecast. It was observed that the results from the two simulators are quite similar in most of the cases; differences were found only in those cases where there was an increase in gas solubility ratio of the model. Thus, it was concluded that in flow simulation of reservoirs analogous of those now studied, mainly when the gas solubility ratio is low, the conventional finite differences simulator may be replaced by flow lines simulator the production forecast is compatible but the computational processing time is lower.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among the different types of pollutants typically attributed to human activities, the petroleum products are one of the most important because of its toxic potential. This toxicity is attributed to the presence of substances such as benzene and its derivatives are very toxic to the central nervous system of man, with chronic toxicity, even in small concentrations. The area chosen for study was the city of Natal, capital of Rio Grande do Norte, where samples were collected in six different areas in the city, comprising 10 wells located in the urban area, being carried out in three distinct periods March/2009, December / June/2010 and 2009, and were evaluated for contamination by volatile hydrocarbons (BTEX - benzene, toluene, ethylbenzene and xylenes), so this work aimed to assess the quality of groundwater wells that supply funding for public supply and trade in the urban area of the city of Natal, in Rio Grande do Norte, contributing to the environmental assessment of the municipality. The analysis of BTEX in water was performed according to EPA Method 8021b. Was used the technique of headspace (TriPlus TP100) coupled to high resolution gas chromatography with selective photoionization detector (PID) and flame ionization (FID) - model Trace GC Ultra, Thermo Electron Corporation brand. The procedure adopted allowed the detection of concentrations of the order of μg.L-1. Data analysis with respect to BTEX in groundwater in the area monitored so far, shows that water quality is still preserved, because it exceeds the limits imposed by the potability Resolution CONAMA Nº. 396, April 2008

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The world has many types of oil that have a range of values of density and viscosity, these are characteristics to identify whether an oil is light, heavy or even ultraheavy. The occurrence of heavy oil has increased significantly and pointing to a need for greater investment in the exploitation of deposits and therefore new methods to recover that oil. There are economic forecasts that by 2025, the heavy oil will be the main source of fossil energy in the world. One such method is the use of solvent vaporized VAPEX which is known as a recovery method which consists of two horizontal wells parallel to each other, with a gun and another producer, which uses as an injection solvent that is vaporized in order to reduce the viscosity of oil or bitumen, facilitating the flow to the producing well. This method was proposed by Dr. Roger Butler, in 1991. The importance of this study is to analyze how the influence some operational reservoir and parameters are important in the process VAPEX, such as accumulation of oil produced in the recovery factor in flow injection and production rate. Parameters such as flow injection, spacing between wells, type of solvent to be injected, vertical permeability and oil viscosity were addressed in this study. The results showed that the oil viscosity is the parameter that showed statistically significant influence, then the choice of Heptane solvent to be injected showed a greater recovery of oil compared to other solvents chosen, considering the spacing between the wells was shown that for a greater distance between the wells to produce more oil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of groundwater are the gas stations. The city of Natal has about 120 gas stations, of which only has an environmental license for operation. Discontinuities in the offices were notified by the Public Ministry of Rio Grande do Norte to carry out the environmental adaptations, among which is the investigation of environmental liabilities. The preliminary and confirmatory stages of this investigation consisted in the evaluation of soil gas surveys with two confirmatory chemical analysis of BTEX, PAH and TPH. To get a good evaluation and interpretation of results obtained in the field, it became necessary three-dimensional representation of them. We used a CAD software to graph the equipment installed in a retail service station fuel in Natal, as well as the plumes of contamination by volatile organic compounds. The tool was concluded that contamination is not located in the current system of underground storage of fuel development, but reflects the historical past in which tanks were removed not tight gasoline and diesel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crude oil has between 0.04 up to 5% of sulphur, the higher the oil the higher the sulphur levels. Sulphur usually gives problems such as corrosion in refinery, and once burnt produces SO2 that goes to atmosphere. This work aim to investigate the capacity of Rhodococcus rhodochrous (NRRL B-2149) to metabolize the model compound 4-methyldibenzotiophene (4-MDBT), to remove the sulphur and transform it in 2-hydroxybiphenyl (2-HBF) and sulphite using the 4S pathway. Kynetic runs were carried out in shaker at 120 rpm and 32°C. Samples were taken every 12h to assay substrate consume as well as cells production using HPLC. Results showed that R. rhodochrous NRRL B-2149 can use the 4S pathway in order to remove sulphur without change the carbon chain of the molecule as well as that cells and 4-MDBT affects the product formation. The production of 2-hydroxybiphenyl has interest for industry once it is a potent biocide. However, evaluation is necessary in order to obtain better results compatible with industry needs