874 resultados para Penalty finite element method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is concerned with the construction of general isotropic and anisotropic adaptive strategies, as well as hp-mesh refinement techniques, in combination with dual-weighted-residual a posteriori error indicators for the discontinuous Galerkin finite element discretization of compressible fluid flow problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional finite element model of cold pilgering of stainless steel tubes is developed in this paper. The objective is to use the model to increase the understanding of forces and deformations in the process. The focus is on the influence of vertical displacements of the roll stand and axial displacements of the mandrel and tube. Therefore, the rigid tools and the tube are supported with elastic springs. Additionally, the influences of friction coefficients in the tube/mandrel and tube/roll interfaces are examined. A sensitivity study is performed to investigate the influences of these parameters on the strain path and the roll separation force. The results show the importance of accounting for the displacements of the tube and rigid tools on the roll separation force and the accumulative plastic strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ground deformation provides valuable insights on subsurface processes with pattens reflecting the characteristics of the source at depth. In active volcanic sites displacements can be observed in unrest phases; therefore, a correct interpretation is essential to assess the hazard potential. Inverse modeling is employed to obtain quantitative estimates of parameters describing the source. However, despite the robustness of the available approaches, a realistic imaging of these reservoirs is still challenging. While analytical models return quick but simplistic results, assuming an isotropic and elastic crust, more sophisticated numerical models, accounting for the effects of topographic loads, crust inelasticity and structural discontinuities, require much higher computational effort and information about the crust rheology may be challenging to infer. All these approaches are based on a-priori source shape constraints, influencing the solution reliability. In this thesis, we present a new approach aimed at overcoming the aforementioned limitations, modeling sources free of a-priori shape constraints with the advantages of FEM simulations, but with a cost-efficient procedure. The source is represented as an assembly of elementary units, consisting in cubic elements of a regular FE mesh loaded with a unitary stress tensors. The surface response due to each of the six stress tensor components is computed and linearly combined to obtain the total displacement field. In this way, the source can assume potentially any shape. Our tests prove the equivalence of the deformation fields due to our assembly and that of corresponding cavities with uniform boundary pressure. Our ability to simulate pressurized cavities in a continuum domain permits to pre-compute surface responses, avoiding remeshing. A Bayesian trans-dimensional inversion algorithm implementing this strategy is developed. 3D Voronoi cells are used to sample the model domain, selecting the elementary units contributing to the source solution and those remaining inactive as part of the crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis is one of the major causes of mortality among the elderly. Nowadays, areal bone mineral density (aBMD) is used as diagnostic criteria for osteoporosis; however, this is a moderate predictor of the femur fracture risk and does not capture the effect of some anatomical and physiological properties on the bone strength estimation. Data from past research suggest that most fragility femur fractures occur in patients with aBMD values outside the pathological range. Subject-specific finite element models derived from computed tomography data are considered better tools to non-invasively assess hip fracture risk. In particular, the Bologna Biomechanical Computed Tomography (BBCT) is an In Silico methodology that uses a subject specific FE model to predict bone strength. Different studies demonstrated that the modeling pipeline can increase predictive accuracy of osteoporosis detection and assess the efficacy of new antiresorptive drugs. However, one critical aspect that must be properly addressed before using the technology in the clinical practice, is the assessment of the model credibility. The aim of this study was to define and perform verification and uncertainty quantification analyses on the BBCT methodology following the risk-based credibility assessment framework recently proposed in the VV-40 standard. The analyses focused on the main verification tests used in computational solid mechanics: force and moment equilibrium check, mesh convergence analyses, mesh quality metrics study, evaluation of the uncertainties associated to the definition of the boundary conditions and material properties mapping. Results of these analyses showed that the FE model is correctly implemented and solved. The operation that mostly affect the model results is the material properties mapping step. This work represents an important step that, together with the ongoing clinical validation activities, will contribute to demonstrate the credibility of the BBCT methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative Stiffness Structures are mechanical systems that require a decrease in the applied force to generate an increase in displacement. They are structures that possess special characteristics such as snap-through and bi-stability. All of these features make them particularly suitable for different applications, such as shock-absorption, vibration isolation and damping. From this point of view, they have risen awareness of their characteristics and, in order to match them to the application needed, a numerical simulation is of great interest. In this regard, this thesis is a continuation of previous studies in a circular negative stiffness structure and aims at refine the numerical model by presenting a new solution. To that end, an investigation procedure is needed. Amongst all of the methods available, root cause analysis was the chosen one to perform the investigation since it provides a clear view of the problem under analysis and a categorization of all the causes behind it. As a result of the cause-effect analysis, the main causes that have influence on the numerical results were obtained. Once all of the causes were listed, solutions to them were proposed and it led to a new numerical model. The numerical model proposed was of nonlinear type of analysis with hexagonal elements and a hyperelastic material model. The results were analyzed through force-displacement curves, allowing for the visualization of the structure’s energy recovery. When compared to the results obtained from the experimental part, it is evident that the trend is similar and the negative stiffness behaviour is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Losses of horticulture product in Brazil are significant and among the main causes are the use of inappropriate boxes and the absence of a cold chain. A project for boxes is proposed, based on computer simulations, optimization and experimental validation, trying to minimize the amount of wood associated with structural and ergonomic aspects and the effective area of the openings. Three box prototypes were designed and built using straight laths with different configurations and areas of openings (54% and 36%). The cooling efficiency of Tommy Atkins mango (Mangifera Indica L.) was evaluated by determining the cooling time for fruit packed in the wood models and packed in the commercially used cardboard boxes, submitted to cooling in a forced-air system, at a temperature of 6ºC and average relative humidity of 85.4±2.1%. The Finite Element Method was applied, for the dimensioning and structural optimization of the model with the best behavior in relation to cooling. All wooden boxes with fruit underwent vibration testing for two hours (20 Hz). There was no significant difference in average cooling time in the wooden boxes (36.08±1.44 min); however, the difference was significant in comparison to the cardboard boxes (82.63±29.64 min). In the model chosen for structural optimization (36% effective area of openings and two side laths), the reduction in total volume of material was 60% and 83% in the cross section of the columns. There was no indication of mechanical damage in the fruit after undergoing the vibration test. Computer simulations and structural study may be used as a support tool for developing projects for boxes, with geometric, ergonomic and thermal criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkali-aggregate reaction (AAR) is a chemical reaction that provokes a heterogeneous expansion of concrete and reduces important properties such as Young's modulus, leading to a reduction in the structure's useful life. In this study, a parametric model is employed to determine the spatial distribution of the concrete expansion, combining normalized factors that influence the reaction through an AAR expansion law. Optimization techniques were employed to adjust the numerical results and observations in a real structure. A three-dimensional version of the model has been implemented in a finite element commercial package (ANSYS(C)) and verified in the analysis of an accelerated mortar test. Comparisons were made between two AAR mathematical descriptions for the mechanical phenomenon, using the same methodology, and an expansion curve obtained from experiment. Some parametric studies are also presented. The numerical results compared very well with the experimental data validating the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a formulation to deal with dynamic thermomechanical problems by the finite element method. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions, not displacements, to solve the mechanical problem. The thermal problem is solved by a regular finite element method. Such formulation has the advantage of being simple and accurate. As a solution strategy, it has been used as a natural split of the thermomechanical problem, usually called isothermal split or isothermal staggered algorithm. Usual internal variables and the additive decomposition of the strain tensor have been adopted to model the plastic behavior. Four examples are presented to show the applicability of the technique. The results are compared with other authors` numerical solutions and experimental results. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber-reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre-existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding `rebar` elements, node-by-node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non-linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non-linear analysis, to validate and show the capabilities of the formulation. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is related to the so-called non-conventional finite element formulations. Essentially, a methodology for the enrichment of the initial approximation which is typical of the meshless methods and based on the clouds concept is introduced in the hybrid-Trefftz formulation for plane elasticity. The formulation presented allows for the approximation and direct enrichment of two independent fields: stresses in the domains and displacements on the boundaries of the elements. Defined by a set of elements and interior boundaries sharing a common node, the cloud notion is employed to select the enrichment support for the approximation fields. The numerical analysis performed reveals an excellent performance of the resulting formulation, characterized by the good approximation ability and a reduced computational effort. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the sheaf strength of vertical interfaces of masonry walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.