971 resultados para Pcr-elisa
Resumo:
BACKGROUND: Creatinine clearance is the most common method used to assess glomerular filtration rate (GFR). In children, GFR can also be estimated without urine collection, using the formula GFR (mL/min x 1.73 m2) = K x height [cm]/Pcr [mumol/L]), where Pcr represents the plasma creatinine concentration. K is usually calculated using creatinine clearance (Ccr) as an index of GFR. The aim of the present study was to evaluate the reliability of the formula, using the standard UV/P inulin clearance to calculate K. METHODS: Clearance data obtained in 200 patients (1 month to 23 years) during the years 1988-1994 were used to calculate the factor K as a function of age. Forty-four additional patients were studied prospectively in conditions of either hydropenia or water diuresis in order to evaluate the possible variation of K as a function of urine flow rate. RESULTS: When GFR was estimated by the standard inulin clearance, the calculated values of K was 39 (infants less than 6 months), 44 (1-2 years) and 47 (2-12 years). The correlation between the values of GFR, as estimated by the formula, and the values measured by the standard clearance of inulin was highly significant; the scatter of individual values was however substantial. When K was calculated using Ccr, the formula overestimated Cin at all urine flow rates. When calculated from Ccr, K varied as a function of urine flow rate (K = 50 at urine flow rates of 3.5 and K = 64 at urine flow rates of 8.5 mL/min x 1.73 m2). When calculated from Cin, in the same conditions, K remained constant with a value of 50. CONCLUSIONS: The formula GFR = K x H/Pcr can be used to estimate GFR. The scatter of values precludes however the use of the formula to estimate GFR in pathophysiological studies. The formula should only be used when K is calculated from Cin, and the plasma creatinine concentration is measured in well defined conditions of hydration.
Resumo:
Com a finalidade de fazer uma avaliação da frequência do antígeno de superfície da hepatite viral do tipo B (AgHBs) nos portadores HIV e grávidas atendidos no Laboratório Elisa-Blot do Hospital Agostinho Neto em 2006 e 2007, foi feito um estudo descritivo retrospectivo, com base na recolha de dados entre 1 de Janeiro de 2006 a 31 de Dezembro de 2007. Os dados foram recolhidos com base em fichas e no banco de dados informático, existentes no Laboratório Elisa-Blot do Hospital Agostinho Neto. Os dados foram colectados segundo as variáveis de tempo, pessoa e lugar. Os resultados demonstraram uma frequência do AgHBs durante o período de estudo de 4,96% (25/504). Esse valor corresponde a 11% (15/135) dos portadores do HIV e 3% em grávidas com sorologia positiva para HBsAg. Em relação ao perfil dos portadores do HIV, estes tinham uma idade média de 40,6 anos, a maioria do sexo feminino e residentes no concelho da Praia. As grávidas tinham uma idade média de 28,4 anos, a maioria residente também no concelho da Praia. As análises também demonstraram que o perfil dos casos com sorologia positiva para o AgHBs nos portadores do HIV era na sua maioria do sexo masculino com uma proporção de 60% durante o período de estudo. A maior ocorrência ocorreu na faixa etária 30 a 49 anos com uma proporção de 67% e 50% relativamente ao período de estudo. O concelho da Praia foi o que apresentou maior proporção com 67% e 58% em 2006 e 2007 respectivamente. Em relação as grávidas a maior proporção de positividade do AgHBs ocorreu também na faixa etária 30 a 49 anos com 75% e 67% e no concelho da Praia com uma proporção de 50% e 67% referentes aos anos 2006 e 2007 respectivamente.
Resumo:
The aim of the present study was to examine genetic variability in populations of An. cruzii by employing PCR-RAPD and PCR-RFLP markers. All analyses were carried out using individuals of the F1 generation of wild caught females obtained in Santa Catarina State (Florianópolis and São Francisco do Sul), Paraná State (Morretes, Paranaguá and Guaratuba) and São Paulo State (Cananéia). In the PCR-RAPD experiments, seven primers were used for comparisons within and among populations. The restriction profile of the ITS2 including a fragment of both 5.8S and 28S regions of the rDNA was obtained with the enzymes BstUI, HaeIII, TaqI, HhaI, Sau96I, HinfI, HincII and NruI. The PCR-RAPD method detected a large number of polymorphic bands. Genetic distance among populations of An. cruzii varied from 0,0214 to 0,0673, suggesting that all individuals used in the analyses belong to a single species. The number of migrants per generation (Nm) was 4.3, showing the existence of gene flow among populations. The restriction profile of the ITS2, 5.8S and 28S gene regions was similar in all An. cruzii samples, whereas the results obtained by using HhaI and NruI are indicative that the individuals analyzed have nucleotide sequences distinct from those of An. cruzii samples from Peruíbe and Juquiazinho deposited in GenBank.
Resumo:
The aim of this study was to assess whether Neisseria meningitidis, Listeria monocytogenes, Streptococcus pneumoniae and Haemophilus influenzae can be identified using the polymerase chain reaction technique in the cerebrospinal fluid of severely decomposed bodies with known, noninfectious causes of death or whether postmortem changes can lead to false positive results and thus erroneous diagnostic information. Biochemical investigations, postmortem bacteriology and real-time polymerase chain reaction analysis in cerebrospinal fluid were performed in a series of medico-legal autopsies that included noninfectious causes of death with decomposition, bacterial meningitis without decomposition, bacterial meningitis with decomposition, low respiratory tract infections with decomposition and abdominal infections with decomposition. In noninfectious causes of death with decomposition, postmortem investigations failed to reveal results consistent with generalized inflammation or bacterial infections at the time of death. Real-time polymerase chain reaction analysis in cerebrospinal fluid did not identify the studied bacteria in any of these cases. The results of this study highlight the usefulness of molecular approaches in bacteriology as well as the use of alternative biological samples in postmortem biochemistry in order to obtain suitable information even in corpses with severe decompositional changes.
Resumo:
A fast and reliable assay for the identification of dermatophyte fungi and nondermatophyte fungi (NDF) in onychomycosis is essential, since NDF are especially difficult to cure using standard treatment. Diagnosis is usually based on both direct microscopic examination of nail scrapings and macroscopic and microscopic identification of the infectious fungus in culture assays. In the last decade, PCR assays have been developed for the direct detection of fungi in nail samples. In this study, we describe a PCR-terminal restriction fragment length polymorphism (TRFLP) assay to directly and routinely identify the infecting fungi in nails. Fungal DNA was easily extracted using a commercial kit after dissolving nail fragments in an Na(2)S solution. Trichophyton spp., as well as 12 NDF, could be unambiguously identified by the specific restriction fragment size of 5'-end-labeled amplified 28S DNA. This assay enables the distinction of different fungal infectious agents and their identification in mixed infections. Infectious agents could be identified in 74% (162/219) of cases in which the culture results were negative. The PCR-TRFLP assay described here is simple and reliable. Furthermore, it has the possibility to be automated and thus routinely applied to the rapid diagnosis of a large number of clinical specimens in dermatology laboratories.
Resumo:
Pneumocystis jirovecii pneumonia (PCP) is a common opportunistic infection. Microscopic diagnosis, including diagnosis using the Merifluor-Pneumocystis direct fluorescent antigen (MP-DFA) test, has limitations. Real-time PCR may assist in diagnosis, but no commercially validated real-time PCR assay has been available to date. MycAssay Pneumocystis is a commercial assay that targets the P. jirovecii mitochondrial large subunit (analytical detection limit, ≤3.5 copies/μl of sample). A multicenter trial recruited 110 subjects: 54 with transplants (40 with lung transplants), 32 with nonmalignant conditions, 13 with leukemia, and 11 with solid tumors; 9 were HIV positive. A total of 110 respiratory samples (92% of which were bronchoalveolar lavage [BAL] specimens) were analyzed by PCR. Performance was characterized relative to investigator-determined clinical diagnosis of PCP (including local diagnostic tests), and PCR results were compared with MP-DFA test results for 83 subjects. Thirteen of 14 subjects with PCP and 9/96 without PCP (including 5 undergoing BAL surveillance after lung transplantation) had positive PCR results; sensitivity, specificity, and positive and negative predictive values (PPV and NPV, respectively) were 93%, 91%, 59%, and 99%, respectively. Fourteen of 83 subjects for whom PCR and MP-DFA test results were available had PCP; PCR sensitivity, specificity, PPV, and NPV were 93%, 90%, 65%, and 98%, respectively, and MP-DFA test sensitivity, specificity, PPV, and NPV were 93%, 100%, 100%, and 98%. Of the 9 PCR-positive subjects without PCP, 1 later developed PCP. The PCR diagnostic assay compares well with clinical diagnosis using nonmolecular methods. Additional positive results compared with the MP-DFA test may reflect low-level infection or colonization.
Resumo:
The aim of this study was to develop an in-house enzyme-linked immunosorbent assay (ELISA) for the serological diagnosis of ringworm infection in cattle. We used available recombinant forms of Trichophyton rubrum dipeptidyl peptidase V (TruDppV) and T. rubrum leucin aminopeptidase 2 (TruLap2), which are 98% identical to Trichophyton verrucosum orthologues. Field serum samples from 135 cattle with ringworm infection, as confirmed by direct microscopy, fluorescence microscopy, and PCR, and from 55 cattle without any apparent skin lesions or history of ringworm infection that served as negative controls were used. Sensitivities, specificities, and positive and negative predictive values were determined to evaluate the diagnostic value of our ELISA. Overall, the ELISAs based on recombinant TruDppV and TruLap2 discriminated well between infected animals and healthy controls. Highly significant differences (P < 0.0001, Mann-Whitney U test) were noted between optical density values obtained when sera from infected versus control cattle were tested. The ELISA developed for the detection of specific antibodies against DppV gave 89.6% sensitivity, 92.7% specificity, a 96.8% positive predictive value, and a 78.4% negative predictive value. The recombinant TruLap2-based ELISA displayed 88.1% sensitivity, 90.9% specificity, a 95.9% positive predictive value, and a 75.7% negative predictive value. To the best of our knowledge, this is the first ELISA based on recombinant antigens for assessing immune responses to ringworm infection in cattle; it is particularly suitable for epidemiological studies and also for the evaluation of vaccines and/or vaccination procedures.
Resumo:
Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count nonculturableor non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescencemicroscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the ''impaction on nutrient agar'' method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria. [Authors]
Resumo:
Summary: Enterohemorrhagic Escherichia coli (EHEC) and its detection with a PCR method
Resumo:
BACKGROUND: Cytomegalovirus (CMV) infection is associated with significant morbidity and mortality in transplant recipients. Resistance against ganciclovir is increasingly observed. According to current guidelines, direct drug resistance testing is not always performed due to high costs and work effort, even when resistance is suspected. OBJECTIVES: To develop a more sensitive, easy applicable and cost-effective assay as proof of concept for direct drug resistance testing in CMV surveillance of post-transplant patients. STUDY DESIGN: Five consecutive plasma samples from a heart transplant patient with a primary CMV infection were analyzed by quantitative real-time polymerase chain reaction (rtPCR) as a surrogate marker for therapy failure, and by direct drug resistance detection assays such as Sanger sequencing and the novel primer extension (PEX) reaction matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based method. RESULTS: This report demonstrates that PEX reaction followed by MALDI-TOF analysis detects the A594V mutation, encoding ganciclovir resistance, ten days earlier compared to Sanger sequencing and more than 30 days prior to an increase in viral load. CONCLUSION: The greatly increased sensitivity and rapid turnaround-time combined with easy handling and moderate costs indicate that this procedure could make a major contribution to improve transplantation outcomes.
Resumo:
Clin Microbiol Infect ABSTRACT: The aetiological diagnosis of community-acquired pneumonia (CAP) is challenging in children, and serological markers would be useful surrogates for epidemiological studies of pneumococcal CAP. We compared the use of anti-pneumolysin (Ply) antibody alone or with four additional pneumococcal surface proteins (PSPs) (pneumococcal histidine triad D (PhtD), pneumococcal histidine triad E (PhtE), LytB, and pneumococcal choline-binding protein A (PcpA)) as serological probes in children hospitalized with CAP. Recent pneumococcal exposure (positive blood culture for Streptococcus pneumoniae, Ply(+) blood PCR finding, and PSP seroresponse) was predefined as supporting the diagnosis of presumed pneumococcal CAP (P-CAP). Twenty-three of 75 (31%) children with CAP (mean age 33.7 months) had a Ply(+) PCR finding and/or a ≥2-fold increase of antibodies. Adding seroresponses to four PSPs identified 12 additional patients (35/75, 45%), increasing the sensitivity of the diagnosis of P-CAP from 0.44 (Ply alone) to 0.94. Convalescent anti-Ply and anti-PhtD antibody titres were significantly higher in P-CAP than in non P-CAP patients (446 vs. 169 ELISA Units (EU)/mL, p 0.031, and 189 vs. 66 EU/mL, p 0.044), confirming recent exposure. Acute anti-PcpA titres were three-fold lower (71 vs. 286 EU/mL, p <0.001) in P-CAP children. Regression analyses confirmed a low level of acute PcpA antibodies as the only independent predictor (p 0.002) of P-CAP. Novel PSPs facilitate the demonstration of recent pneumococcal exposure in CAP children. Low anti-PcpA antibody titres at admission distinguished children with P-CAP from those with CAP with a non-pneumococcal origin.
Resumo:
Source: Description: pKM-19 is a 1.0 kb EcoRI human genomic fragment inserted in pUC13, that detects a Scrfl (CC/NGG) RFLP (1, 2). We report here the primer sequences suitable for the detection of this RFLP by PCR...
Resumo:
Q fever is a worldwide zoonotic infectious disease due to Coxiella burnetii. The clinical presentation may be acute (pneumonia and/or hepatitis) or chronic (most commonly endocarditis). Diagnosis mainly relies on serology and PCR. We therefore developed a quantitative real-time PCR. We first tested blindly its performance on various clinical samples and then, when thoroughly validated, we applied it during a 7-year period for the diagnosis of both acute and persistent C. burnetii infection. Analytical sensitivity (< 10 copies/PCR) was excellent. When tested blindly on 183 samples, the specificity of the PCR was 100% (142/142) and the sensitivity was 71% (29/41). The sensitivity was 88% (7/8) on valvular samples, 69% (20/29) on blood samples and 50% (2/4) on urine samples. This new quantitative PCR was then successfully applied for the diagnosis of acute Q fever and endovascular infection due to C. burnetii, allowing the diagnosis of Q fever in six patients over a 7-year period. During a local small cluster of cases, the PCR was also applied to blood from 1355 blood donors; all were negative confirming the high specificity of this test. In conclusion, we developed a highly specific method with excellent sensitivity, which may be used on sera for the diagnosis of acute Q fever and on various samples such as sera, valvular samples, aortic specimens, bone and liver, for the diagnosis of persistent C. burnetii infection.