960 resultados para Pcr Instability
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low levels
Resumo:
We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.
Resumo:
The origin of the eddy variability around the 25°S band in the Indian Ocean is investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar, and to the north by the westward flowing South Equatorial Current (SEC) between 15° and 20°S. The shallow, eastward flowing South Indian Ocean Countercurrent (SICC) extends above the deep reaching, westward flowing SEC to 95°E around the latitude of the high variability band. Applying a two-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5–6 times/year) and wavelengths (290–470 km) of the unstable modes are close to observations of the mesoscale variability derived from altimetry data. It is likely then that Rossby wave variability locally generated in the subtropical South Indian Ocean by baroclinic instability is the origin of the eddy variability around 25°S as seen, for example, in satellite altimetry.
Resumo:
The effects of uniform straining and shearing on the stability of a surface quasi-geostrophic temperature filament are investigated. Straining is shown to stabilize perturbations for wide filaments but only for a finite time until the filament thins to a critical width, after which some perturbations can grow. No filament can be stabilized in practice, since there are perturbations that can grow large for any strain rate. The optimally growing perturbations, defined as solutions that reach a certain threshold amplitude first, are found numerically for a wide range of parameter values. The radii of the vortices formed through nonlinear roll-up are found to be proportional to θ/s, where θ is the temperature anomaly of the filament and s the strain rate, and are not dependent on the initial size of the filament. Shearing is shown to reduce the normal-mode growth rates, but it cannot stabilize them completely when there are temperature discontinuities in the basic state; smooth filaments can be stabilized completely by shearing and a simple scaling argument provides the shear rate required. Copyright © 2010 Royal Meteorological Society
Resumo:
The ability of PCR to detect infections of Theileria parva, the cause of East Coast Fever, in field-collected tick and bovine samples from Tanzania was evaluated. PCR-detected infection prevalence was high (15/20, 75%) in unfed adult Rhipicephalus appendiculatus ticks that fed as nymphs on an acutely-infected calf, but low (22/836, 2.6%) in unfed adult R. appendiculatus collected from field sites in Tanzania. Tick infection prevalence was comparable to that in previous studies that used salivary gland staining to detect T parva infection in field-collected host-seeking ticks. Of 282 naturally-exposed zebu calves, seven had PCR-positive buffy coat samples prior to detection of Theileria spp. parasites in stained huffy coat cells or lymph node biopsies. Evidence of Theileria spp. infections was detected in stained smears of lymph node biopsies from 109 calves (38.6%) and huffy coat samples from 81 (28.7%), while huffy coat samples from 66 (23.4%) were PCR-positive for T parva. Implications of these findings for the sensitivity and specificity of the PCR are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.
Resumo:
Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.
Resumo:
Cashew (Anacardium occidentale L.) is the most economically important tropical nut crop in the world, and yet there are no sequence tagged site (STS) markers available for its study. Here we use an automated, high-throughput system to isolate cashew microsatellites from a non-enriched genomic library blotted onto membranes at high density for screening. Sixty-five sequences contained a microsatellite array, of which 21 proved polymorphic among a closely related seed garden population of 49 genotypes. Twelve markers were suitable for multiplex analysis. Of these, 10 amplified in all three related tropical tree species tested: Anacardium microcarpum, Anacardium pumilum and Anacardium nanum.
Resumo:
Nine different classifications have been produced in the last 70 years for the horticulturally valuable genus Cyclamen, a small genus with fewer than 30 species. These classifications, generated by intuitive methods and cladistic analyses, incorporated a total of four infrageneric ranks above that of species and were based on data from morphology, cytology and DNA sequencing. Our results, based on cladistic analyses of three independent data sources − nrDNA ITS, cpDNA trnL intron and morphological data − reveal good resolution only in nrDNA sequence data. However, when these three data sources are combined they provide stronger resolution and support for three major clades, only one of which, subgenus Psilanthum, has been consistently supported in previous classifications. The differing infrageneric classifications produced in Cyclamen result from varying taxon sampling, differing interpretation of morphological data, changes in the sources and analysis of data, and inconsistent application of names. Extensive subdivision of small genera in the absence of adequate data that could provide evidence for consistent patterns of relationship is premature and leads to a proliferation of names.© 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 146, 339-349.
Resumo:
The distribution of sulphate-reducing bacteria (SRB) in the sediments of the Colne River estuary, Essex, UK covering different saline concentrations of sediment porewater was investigated by the use of quantitative competitive PCR. Here, we show that a new PCR primer set and a new quantitative method using PCR are useful tools for the detection and the enumeration of SRB in natural environments. A PCR primer set selective for the dissimilatory sulphite reductase gene (dsr) of SRB was designed. PCR amplification using the single set of dsr-specific primers resulted in PCR products of the expected size from all 27 SRB strains tested, including Gram-negative and positive species. Sixty clones derived from sediment DNA using the primers were sequenced and all were closely related with the predicted dsr of SRB. These results indicate that PCR using the newly designed primer set are useful for the selective detection of SRB from a natural sample. This primer set was used to estimate cell numbers by dsr selective competitive PCR using a competitor, which was about 20% shorter than the targeted region of dsr. This procedure was applied to sediment samples from the River Colne estuary, Essex, UK together with simultaneous measurement of in situ rates of sulphate reduction. High densities of SRB ranging from 0.2 - 5.7 × 108 cells ml-1 wet sediment were estimated by the competitive PCR assuming that all SRB have a single copy of dsr. Using these estimates cell specific sulphate reduction rates of 10-17 to 10-15 mol of SO42- cell-1 day-1 were calculated, which is within the range of, or lower than, those previously reported for pure cultures of SRB. Our results show that the newly developed competitive PCR technique targeted to dsr is a powerful tool for rapid and reproducible estimation of SRB numbers in situ and is superior to the use of culture-dependent techniques.
Resumo:
Identification of Fusarium species has always been difficult due to confusing phenotypic classification systems. We have developed a fluorescent-based polymerase chain reaction assay that allows for rapid and reliable identification of five toxigenic and pathogenic Fusarium species. The species includes Fusarium avenaceum, F. culmorum, F. equiseti, F. oxysporum and F. sambucinum. The method is based on the PCR amplification of species-specific DNA fragments using fluorescent oligonucleotide primers, which were designed based on sequence divergence within the internal transcribed spacer region of nuclear ribosomal DNA. Besides providing an accurate, reliable, and quick diagnosis of these Fusaria, another advantage with this method is that it reduces the potential for exposure to carcinogenic chemicals as it substitutes the use of fluorescent dyes in place of ethidium, bromide. Apart from its multidisciplinary importance and usefulness, it also obviates the need for gel electrophoresis. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies.
Resumo:
In this paper, we generalise a previously-described model of the error-prone polymerase chain reaction (PCR) reaction to conditions of arbitrarily variable amplification efficiency and initial population size. Generalisation of the model to these conditions improves the correspondence to observed and expected behaviours of PCR, and restricts the extent to which the model may explore sequence space for a prescribed set of parameters. Error-prone PCR in realistic reaction conditions is predicted to be less effective at generating grossly divergent sequences than the original model. The estimate of mutation rate per cycle by sampling sequences from an in vitro PCR experiment is correspondingly affected by the choice of model and parameters. (c) 2005 Elsevier Ltd. All rights reserved.