973 resultados para Pausanias, fl. ca. 150-175.
Resumo:
We report the temperature evolution of coherently excited acoustic and optical phonon dynamics in the superconducting iron pnictide single crystal Ca(Fe0.944Co0.056)(2)As-2 across the spin density wave transition at T-SDW similar to 85 K and the superconducting transition at T-SC similar to 20 K. The strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range from 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T-SC indicating a coupling of these low-energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T similar to 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T-SDW. Copyright (c) EPLA, 2012
Resumo:
Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
Psoralea corylifolia (PC), a medicinal plant, is used in traditional medicine to treat diabetes. Purpose of the research was to examine the antidiabetic and antilipemic potential of PC and to determine the relationship between its antidiabetic potential and the trace elements present. Wistar rats (150-200 g) with fasting blood glucose (FBG) of 80-110 mg dl(-1)(sub-diabetic) and 150-200 mg dl(-1)(mild diabetic) were selected for the short term antidiabetic studies and severely diabetic rats (FBG > 300 mg dl(-1)) were chosen for the long term antidiabetic and hypolipemic studies of PC seed extract. Laser induced breakdown spectroscopy (LIBS) was used to detect trace elements in the PC extract and the intensity ratios of trace elements were estimated. The dose of 250 mg kg(-1) of PC extract was found to be the most effective in lowering blood glucose level (BGL) of normal, sub, mild and severely diabetic rats during FBG and glucose tolerance test (GTT) studies. Lipid profile studies on severely diabetic rats showed substantial reduction in total cholesterol, triglycerides, very low density lipoprotein, and low density lipoprotein and an increase in the total protein, body weight, high density lipoprotein, and hemoglobin after 28 days of treatment. Significant reduction in urine sugar and protein levels was also observed. LIBS analysis of the PC extract revealed the presence of Mg, Si, Na, K, Ca, Zn and Cl. The study validates the traditional use of PC in the treatment of diabetes and confirms its antilipemic potential. The antidiabetic activity of PC extract may partly be due to the presence of appreciable amounts of insulin potentiating elements like Mg, Ca, and K.
Resumo:
Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting Ca(Fe0.944Co0.056)(2)As-2 single crystals by measuring transient reflectivity changes using femtosecond time-resolved pump-probe spectroscopy. Large changes in the temperature-dependent differential reflectivity values in the vicinity of the spin density wave (T-SDW) and superconducting (T-SC) transition temperatures of the sample have been inferred to have charge gap opening at those temperatures. We have estimated the zero-temperature charge gap value in the superconducting state to be similar to 1.8k(B)T(SC) and an electron-phonon coupling constant lambda of similar to 0.1 in the normal state that signifies the weak coupling in iron pnictides. From the peculiar temperature-dependence of the quasiparticle dynamics in the intermediate temperature region between T-SC and T-SDW we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.
Resumo:
Three refractory coarse grained CAIs from the Efremovka CV3 chondrite, one (E65) previously shown to have formed with live Ca-41, were studied by ion microprobe for their Al-26-Mg-26 and Be-10-B-10 systematic in order to better understand the origin of Be-10. The high precision Al-Mg data and the inferred Al-26/Al-27 values attest that the precursors of the three CAIs evolved in the solar nebula over a period of few hundred thousand years before last melting-crystallization events. The initial Be-10/Be-9 ratios and delta B-10 values defined by the Be-10 isochrons for the three Efremovka CAIs are similar within errors. The CAI Be-10 abundance in published data underscores the large range for initial Be-10/Be-9 ratios. This is contrary to the relatively small range of Al-26/Al-27 variations in CAIs around the canonical ratio. Two models that could explain the origin of this large Be-10/Be-9 range are assessed from the collateral variations predicted for the initial delta B-10 values: (i) closed system decay of Be-10 from a ``canonical'' Be-10/Be-9 ratio and (ii) formation of CAIs from a mixture of solid precursors and nebula gas irradiated during up to a few hundred thousand years. The second scenario is shown to be the most consistent with the data. This shows that the major fraction of Be-10 in CAIs was produced by irradiation of refractory grains, while contributions of galactic cosmic rays trapping and early solar wind irradiation are less dominant. The case for Be-10 production by solar cosmic rays irradiation of solid refractory precursors poses a conundrum for Ca-41 because the latter is easily produced by irradiation and should be more abundant than what is observed in CAIs. Be-10 production by irradiation from solar energetic particles requires high Ca-41 abundance in early solar system, however, this is not observed in CAIs. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We present femtosecond time-resolved pump-probe spectroscopic studies of a pseudogap (PG) along with the superconducting (SC) gap in an overdoped iron pnictide Ca(Fe0.927Co0.073)(2)As-2. It is seen that the temperature evolution of the photo-excited quasiparticle (QP) relaxation dynamics, coherently excited A(1g)-symmetric optical phonon and two acoustic phonon dynamics behave anomalously in the vicinity of the superconducting transition temperature T-c. A continuous change in the sign of the experimentally measured transient differential reflectivity Delta R/R signal at the zero time delay between the pump and probe pulses at a temperature of similar to 200K is inferred as an evidence of the emergence of the PG phase around that temperature. This behavior is independent of the pump photon energy and occurs for crystals without the spin density wave phase transition. Copyright (C) EPLA, 2014
Resumo:
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
Resumo:
Phase equilibria of the system Ca-Ta-O is established by equilibrating eleven samples at 1200 K for prolonged periods and phase identification in quenched samples by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Four ternary oxides are identified: CaTa4O11, CaTa2O6, Ca2Ta2O7 and Ca4Ta2O9. Isothermal section of the phase diagram is composed using the results. Thermodynamic properties of the ternary oxides are measured in the temperature range from 975 to 1275 K employing solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells essentially measure the chemical potentials of CaO in two-phase fields (Ta2O5 + CaTa4O11), (CaTa4O11 + CaTa2O6), (CaTa2O6 + Ca2Ta2O7), and (Ca2Ta2O7 + Ca4Ta2O9) of the pseudo-binary system CaO-Ta2O5. The standard Gibbs energies of formation of the four ternary oxides from their component binary oxides Ta2O5 and CaO are given by: Delta G(f)((ox))(o) (CaTa4O11) (+/- 482)/J mol(-1) = -58644+21.497 (T/K) Delta G(f)((ox))(o) (CaTa2O6) (+/- 618)/J mol(-1) = -55122+21.893 (T/K) Delta G(f)((ox))(o) (Ca2Ta2O7) (+/- 729)/J mol(-1) = -82562+31.843 (T/K) Delta G(f)((ox))(o) (Ca4Ta2O9) (+/- 955)/J mol(-1) = -126598+48.859 (T/K) The Gibbs energy of formation of the four ternary compounds obtained in this study differs significantly from that reported in the literature. The thermodynamic data and phase diagram are used for understanding the mechanism and kinetics of calciothermic and electrochemical reduction of Ta2O5 to metal. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+ Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3CO3.93+O-alpha(9.36-delta), are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+alpha O9.36-delta are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca-Co-O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors were synthesized by the precipitation method. All compounds crystallized in the tetragonal structure with space group 141/a (No. 88). Scherrer's and TEM results revealed that the average crystallite size varies from 32 to 55 nm. FE-SEM illustrate the spherical (CaWO4), bouquet (SrWO4), and fish (BaWO4) like morphologies. PL spectra indicate the broad emission peak maximum at 436 (CaWO4), 440 (SrWO4), and 433 nm (BaWO4) under UV excitation. The calculated CIE color coordinates of MWO4 nanophosphors are close to the commercial BAM and National Television System Committee blue phosphor. The photocatalytic activities of MWO4 were investigated for the degradation of methylene blue dye under UV illumination. At pH 3, BaWO4 nanocatalyst showed 100% dye degradation within 60 min. The photocatalytic activity was in the decreasing order of BaWO4> CaWO4>SrWO4 under both neutral and acidic conditions. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Carbon isotope compositions of carbonate rocks from similar to 2.7-Ga-old Neoarchean Vanivilas Formation of the Dharwar Supergroup presented earlier by us are re-evaluated in this study, besides oxygen isotope compositions of a few silica dolomite pairs. The purpose of such a revisit assumes significance in view of recent field evidences that suggest a glaciomarine origin for the matrix-supported conglomerate member, the Talya conglomerate, which underlies the carbonate rocks of the Vanivilas Formation. An in-depth analysis of carbon isotope data reveals preservation of their pristine character despite the rocks having been subjected to metamorphism to different degrees (from lower greenschist to lower amphibolite facies). The dolomitic member of Vanivilas Formation of Marikanive area is characterized by highly depleted delta C-13 value (up to -5 parts per thousand VPDB) and merits as the Indian example of ca. 2.7-Ga-old cap carbonate. This inference is further supported by estimated low temperature of equilibration documented by a few silica dolomite pairs from the Vanivilas Formation collected near Kalche area. These pairs show evidence for oxygen isotopic equilibrium at low temperatures (similar to 0-20 degrees C) with depleted water (delta O-18 = -21 parts per thousand to -15 parts per thousand VSMOW) of glacial origin. We propose that the mineral pairs were deposited during the deglaciation period when the ocean temperature was in its gradual restoration phase. The dolomite of Marikanive area is the first record of cap carbonates from the Indian subcontinent with Neoarchean antiquity.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
We have employed the highly sensitive electron magnetic resonance technique complimented by magnetization measurements to study the impact of size reduction on the magnetic ordering in nanosized Sm1-x Ca (x) MnO3 (x = 0.35, 0.65 and 0.92). In the bulk form, x = 0.35 sample shows a charge ordering transition at 235 K followed by a mixed magnetic phase, the sample with x = 0.65 exhibits charge order below 275 K and shows an antiferromagnetic insulator phase below 135 K while that with x = 0.92 has a ferromagnetic-cluster glass ground state. Thus, a comparative study of magnetic ground states of bulk and nanoparticles (diameter similar to 25 nm) enables us to investigate size-induced effects on different types of magnetic ordering. It is seen that in the bulk samples the temperature dependences of the EPR parameters are quite different from each other. This difference diminishes for the nanosamples where all the three samples show qualitatively similar behavior. The magnetization measurements corroborate this conclusion.