918 resultados para Pattern recognition systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are a number of genes involved in the regulation of functional process in marine bivalves. In the case of pearl oyster, some of these genes have major role in the immune/defence function and biomineralization process involved in the pearl formation in them. As secondary filter feeders, pearl oysters are exposed to various kinds of stressors like bacteria, viruses, pesticides, industrial wastes, toxic metals and petroleum derivatives, making susceptible to diseases. Environmental changes and ambient stress also affect non-specific immunity, making the organisms vulnerable to infections. These stressors can trigger various cellular responses in the animals in their efforts to counteract the ill effects of the stress on them. These include the expression of defence related genes which encode factors such as antioxidant genes, pattern recognition receptor proteins etc. One of the strategies to combat these problems is to get insight into the disease resistance genes, and use them for disease control and health management. Similarly, although it is known that formation of pearl in molluscs is mediated by specialized proteins which are in turn regulated by specific genes encoding them, there is a paucity of sufficient information on these genes.In view of the above facts, studies on the defence related and pearl forming genes of the pearl oyster assumes importance from the point of view of both sustainable fishery management and aquaculture. At present, there is total lack of sufficient knowledge on the functional genes and their expressions in the Indian pearl oyster Pinctada fucata. Hence this work was taken up to identify and characterize the defence related and pearl forming genes, and study their expression through molecular means, in the Indian pearl oyster Pinctada fucata which are economically important for aquaculture at the southeast coast of India. The present study has successfully carried out the molecular identification, characterization and expression analysis of defence related antioxidant enzyme genes and pattern recognition proteins genes which play vital role in the defence against biotic and abiotic stressors. Antioxidant enzyme genes viz., Cu/Zn superoxide dismutase (Cu/Zn SOD), glutathione peroxidise (GPX) and glutathione-S-transferase (GST) were studied. Concerted approaches using the various molecular tools like polymerase chain reaction (PCR), random amplification of cDNA ends (RACE), molecular cloning and sequencing have resulted in the identification and characterization of full length sequences (924 bp) of the Cu/Zn SOD, most important antioxidant enzyme gene. BLAST search in NCBI confirmed the identity of the gene as Cu/Zn SOD. The presence of the characteristic amino acid sequences such as copper/zinc binding residues, family signature sequences and signal peptides were found out. Multiple sequence alignment comparison and phylogenetic analysis of the nucleotide and amino acid sequences using bioinformatics tools like BioEdit,MEGA etc revealed that the sequences were found to contain regions of diversity as well as homogeneity. Close evolutionary relationship between P. fucata and other aquatic invertebrates was revealed from the phylogenetic tree constructed using SOD amino acid sequence of P. fucata and other invertebrates as well as vertebrates

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Wechselwirkungen zwischen Biomolekülen spielen eine zentrale Rolle in der biochemischen und pharmazeutischen Forschung. In der biomolekularen Interaktionsanalyse sind dabei Biosensoren auf Basis des Oberflächenplasmonresonanzeffekts (SPR-Effekt) weitverbreitet. Seit Einführung der ersten kommerziellen SPR-Biosensoren Anfang der 1990er Jahre wurden verschiedenste Messanordnungen sowie Materialsysteme mit dem Ziel einer möglichst hohen Empfindlichkeit getestet. Eine Möglichkeit zur Steigerung der Empfindlichkeit klassischer SPR-Systeme bieten sogenannte magneto-optische SPR-Biosensoren (MOSPR-Biosensoren). Grundlage der Empfindlichkeitssteigerung ist die gleichzeitige Messung des SPR-Effekts und des transversalen magneto-optischen KERR-Effekts (tMOKE). Bisherige Untersuchungen haben sich meist auf den Einfluss der Magnetisierung freier ferromagnetischer Schichten beschränkt. Im Rahmen dieser Arbeit wurden erstmals austauschverschobene Dünnschichtsysteme (EB-Systeme), eine Kombination aus Ferromagnet und Antiferromagnet, hinsichtlich ihrer Eignung für SPR- und MOSPR-basierte biosensorische Anwendungen untersucht. Aufgrund der remanenten Magnetisierung der ferromagnetischen Schicht und ihrer magnetischen Strukturierbarkeit sind EB-Systeme eine hochinteressante Plattform zur Realisierung neuer Biosensorkonzepte. Zur Reduzierung der stark dämpfendenden Wirkung magnetischer Materialien wurde das hier betrachtete IrMn/Co EB-System zwischen zwei Goldschichten eingebettet. Eine Gegenüberstellung optimierter Au/ IrMn/Co/Au-Systeme mit einem reinen Au-System, wie es typischerweise in kommerziellen SPR-basierten Biosensoren eingesetzt wird, demonstriert, dass mit den entwickelten EB-Systemen vergleichbare Empfindlichkeiten in SPR-Sensor-Anwendungen erreicht werden können. Die magneto-optische Aktivität der untersuchten Dünnschichtsysteme liegt im Bereich der Literaturwerte für Au/Co/Au-Systeme, mit denen erhöhte Empfindlichkeiten gegenüber Standard-SPR-Biosensoren realisiert wurden. Auf Grundlage magnetisch strukturierter Au/IrMn/Co/Au-Systeme wurden neue Biosensorkonzepte entwickelt und getestet. Erste Experimente belegen, dass mit diesen Schichtsystemen eine gleichzeitige Detektion der magnetisierungsabhängigen Reflektivitäten in ortsauflösenden MOSPR-Messungen möglich ist. Eine solche Messanordnung profitiert von der erhöhten Empfindlichkeit MOSPR-basierter Biosensoren, hohen Messgeschwindigkeiten und einem verbesserten Signal-Rausch-Verhältnis. Weiterhin wurde der domänenwandassistierte Transport (DOWMAT) superparamagnetischer Partikel über der Oberfläche eines exemplarischen EB-Systems, zur Sensorintegration von Misch-, Reinigungs- und Aufkonzentrationsfunktionen erfolgreich getestet. Die Ergebnisse demonstrieren, dass ein Transport von Partikelreihen mit hohen Geschwindigkeiten bei moderaten externen Magnetfeldern über den entwickelten Schichtsystemen möglich ist. Die Agglomeration der Partikel wird dabei intrinsisch vermieden. Diese Beobachtungen verdeutlichen die Vorzüge des DOWMAT-Mechanismus für biosensorische Anwendungen. Die präsentierten Untersuchungen bilden die Grundlage auf dem Weg zur Umsetzung neuer vielversprechender Biosensorkonzepte, die eine Schlüsselfunktion in der medizinischen point-of-care-Diagnostik bei der Detektion kleinster Konzentrationen krankheitsrelevanter Biomarker einnehmen können.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an overview of current research on artificial neural networks, emphasizing a statistical perspective. We view neural networks as parameterized graphs that make probabilistic assumptions about data, and view learning algorithms as methods for finding parameter values that look probable in the light of the data. We discuss basic issues in representation and learning, and treat some of the practical issues that arise in fitting networks to data. We also discuss links between neural networks and the general formalism of graphical models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest projecte es pretén utilitzar mètodes coneguts com ara Viola&Jones (detecció) i EigenFaces (reconeixement) per a detectar i reconèixer cares dintre d’imatges de vídeo. Per a aconseguir aquesta tasca cal partir d’un conjunt de dades d’entrenament per a cada un dels mètodes (base de dades formada per imatges i anotacions manuals). A partir d’aquí, l’aplicació, ha de ser capaç de detectar cares en noves imatges i reconèixer-les (identificar de quina cara es tracta)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissenyar, implementar i testejar un sistema per classificar imatges: disseny d’un sistema que primer aprèn com són les imatges d’una classe a partir d’un conjunt d’imatges d’entrenament i després és capaç de classificar noves imatges assignant-les-hi l’ etiqueta corresponent a una de les classes “apreses”. Concretament s’analitzen caràtules de cd-roms, les quals s’han de reconèixer per després reproduir automàticament la música del seu àlbum associat

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coded structured light is an optical technique based on active stereovision that obtains the shape of objects. One shot techniques are based on projecting a unique light pattern with an LCD projector so that grabbing an image with a camera, a large number of correspondences can be obtained. Then, a 3D reconstruction of the illuminated object can be recovered by means of triangulation. The most used strategy to encode one-shot patterns is based on De Bruijn sequences. In This work a new way to design patterns using this type of sequences is presented. The new coding strategy minimises the number of required colours and maximises both the resolution and the accuracy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

: Los métodos imagenológicos para evaluar los nódulos tiroideos han sido motivo de estudio en las últimas décadas, especialmente la ecografía sobresale sobre las otras modalidades diagnósticas por su accesibilidad, portabilidad, y seguridad. A pesar de ello, las características ecográficas de cada nódulo han sido objeto de controversia en cuanto a su potencial detección de malignidad o benignidad. Se presenta un estudio de concordancia entre el estudio citopatológico y la ecografía para la caracterización nódulos tiroideos de naturaleza maligna y benigna, y su análisis de pruebas diagnósticas. Metodología: Se realizó un estudio descriptivo de concordancia con estudio de pruebas diagnósticas anidado. Se escogieron todos los pacientes con nódulos tiroideos a quienes se les realizó ecografía y estudio citopatológico de la lesión y se estudiaron los hallazgos ecográficos para evaluar su potencial diagnóstico para malignidad. Se incluyeron un total de 100 pacientes con nódulos tiroideos potencialmente malignos. La concordancia entre la ecografía en modo B y el estudio citopatológico fue moderada (índice kappa 0.55). La característica con mayor potencial para detectar malignidad fue la presencia de Microcalcificaciones (sensibilidad 75%, especificidad 92%).